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Chapter 1
WHAT IS A MICROCOMPUTER

A microcomputer is a logic device. More precisely, it is an indefinite variety of
logic devices, implemented. on a single chip; and because of the microcomputer,
logic design will never be the same again.

The word ““microprocessor’’ is also widely used in conjunction with microcom-
puters. The term ‘“microprocessor’’ was coined to reflect the limited functions of
these devices as compared to computers; a microprocessor, therefore, represénts
something less than a microcomputer. Current trends have blurred the distinction
between ‘‘microprocessors’’ and ‘‘microcomputers’’; therefore in this book we
use only the term ‘‘microcomputer’’, identifying logic implemented on chips by
specific function -- using traditional terminology.

Figure 1-1 illustrates a microcomputer. The logic of the | CHIP
microcomputer is on a chip, which is mounted in a Dual In-Line

Package (DIP). We refer to the DIP as a logic device, as op- | DEVICE
posed to the silicon wafer, which is a logic chip.

The microcomputer is also a digital computer, as its name would imply.

There are, indeed, striking similarities between microcomputers and other com-
puters. The established method of comparing computers — via instruction 'sets,
addressing modes and execution speeds — makes some microcomputers look so
similar to other computers that any distinction between the two products appears
to be a distinction in search of a difference.

But microcomputers are a new and different product, and that is why the estab--
lished method of comparing computers does not apply to microcomputers. Instruc-

tion sets, addressing modes and execution speeds are of secondary importance to

the microcomputer user. The distribution of logic on chips and the price of

microcomputer devices are the comparisons of primary importance; and it is these

comparisons that set microcomputers apart from all other types of computer, as a

new and different product.

The purpose of this book is to explain not only what microcomputers are but, in
addition; why they must be evaluated in a way that differs so markedly from prior
computer comparisons. ‘

The book does not assume you understand how computers work; therefore, com-
puter concepts are described, beginning with first principles.

Microcomputers and all other computers share a. common ancestor, however. To
acquire a little perspective, we will therefore begin with a short history of com-
puter evolution and identify the origins of the microcomputer.

THE EVOLUTION OF COMPUTERS

Today’s smallest microcomputer and largest mainframe computer share a common
ancestor — the UNIVAC 1 which was built out of vacuum tubes in 1950, and filled
a room; yet it had less computing power than most of today’s microcomputers.

1-1
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UNIVAC 1, and the vacuum tube computers that fbllowed, were used for a very
limited number of ““expense-is-no-object” applications, frequently to solve mathe-
matical problems that might otherwise be impossible to solve.

The vacuum tube computer’s logic was not particularly well suited to scientific ap-
plications; its logic was the immediate and natural consequence of being built out of
bistable logic devices — the building block of every digital computer.

Indeed, the basic concepts for the design of a computing machine go all the way
back to Charles Babbage, who in 1833 laid out the concepts that can be found, with
minor variations, in every digital computer built today. In Chapters 2 and 3 we
describe these basic concepts — concepts that allow computing logic to be built out
of binary digits, irrespective of how the computer will be used.

What we are saying is that since the dawn of the computer industry, there have
been no radical breakthroughs in the basic concepts of computing. It is advances
in solid state physics that have been the computer industry’s evolutionary force.
New electronic technology has caused computer prices to fall so rapidly that ev-
ery few years entire new markets have been engulfed by computers.

In 1960 computer prices had declined to the point where they could be used for data
processing, and the day of the general purpose computer had arrived.

In 1965 the PDP-8, at $50,000, brought computers into the laboratory and the
manufacturing plant’s production line; and the minicomputer industry was born. To-
day minicomputers cost as little as $1,000, and their sphere of influence has spread
as prices have come down.

But microcomputer prices range from $5 to $2560 — and we have entered an era
where a computer can control a washing machine or an oven, or it can be a compo-
nent in consumer products that are mass merchandised.

What are the advances in solid state physics that we speak of?

The vacuum tube is a bulky device with expensive internal elements. In the late
fifties it was replaced by the transistor, a small piece of germanium metal, suitably
doped with impurities.

Soon an array of discrete, low cost components were available;

A signal inverter: A

A ' ’
An AND gate:
n AND gate . :]D__ AB

An OR gate: A A+B
\ 8
An EXCLUSIVE OR gate: ng__ AB+AB

A NOT AND gate could have been: A AB —
B i AB
but instead was designed as a single, new NAND gate: /;_-__D_.@




N

Four NAND gates were built into one chip (costing the same as, or little more than, a
single NAND gate) to give a quadruple 2-input positive-NAND buffer:

=

aE

%] L I & E o |

] n [m | [l

Devices such as the quadruple 2-input positive-NAND buffer spawned a whole range of devices,
affectionately known, by a generation of logic designers, as 7400 series integrated circuits.

Indeed. the 7400 series integrated circuits, in their day, had as deep an impact on the electronics
industry as microcomputers are having today; because 7400 series integrated circuits converted a
generation of “circuit designers” into a generation of “logic designers” --- and the conversion
occurred almost overnight.

Four gates on one chip became ten, and then a hundred, and then a thousand; today
ten thousand gates worth of logic can be implemented on a single silicon chip, and
the end is by no means predictable, or even in sight.

A chip with a number of gates on it is called an integrated cir- | 7400

cuit. If there are approximately 100 to 1000 gates on a chip, we | INTEGRATED
refer to the logic as Medium Scale Integration {(or MSI). At some | CIRCUITS
ill-defined level, above 1000 gates of logic on a chip, we are talk-

ing of Large Scale Integration (or LSI). MEDIUM SCALE
The interesting aspect of integrated circuits is that the cost of & INTEGRATION
chip is a function of physical size — it is not a function of how
much logic has been implemented on the chip. Therefore, as LARGE SCALE

. } INTEGRATION
chips become more complex, cheaper computers can be built.

Two aspects of the amazingly shrinking computer need to be clarified:
1) Does the whole computer shrink? And if not, which parts remained the same?

2) If the microcomputer is so inexpensive, why has it not eliminated all other com-
puters?

First of all, the whole computer cannot shrink; only the electronics can. What re-
mains is the human interface — consoles and switches, means for accepting data in-
puts and generating results in human readable form — all the parts of the computer
that are unnecessary once a computer becomes a logic device.

The microcomputer will never eliminate all other computers because when com-
puters are used to process data or solve scientific problems, there is a relentless
economic need to make the computer more powerful. So with every major advance




-und state electronics technology, you get two new products: a sisan.. . _
yesterday’s computer and a more powerful ‘‘today’s’’ computer:
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/<—— CHEAPEST COMPUTER

FIRST COMPUTER

FOUR MAJOR ADVANCES IN
SEMICONDUCTOR TECHNOLOGY

As time went by, there developed a considerable spread between the capabilities of
the cheapest computer and the most powerful computer. Thus in 1965 the first ar-
bitrary division was made — between minicomputers and large computers. We will
not attempt to define what a minicomputer is, as against a large computer. A
minicomputer is a minicomputer because the product’s manufacturer calls it a
minicomputer.

In 1970, a second arbitrary division was made, between minicomputer and micro-
computer; but this time the differences between products are easier to define:
A’ microcomputer is sold as one, or a very few logical devices, destined to become
components in a larger logic system.

By way of contrast, all other computers are vehicles for the execution of computer
programs, each of which transiently defines the function of the computer system.
But this definitive difference between a “minicomputer” and a “microcomputer” is already blur-
ring — for two reasons:

First, the day of the computer hobbyist is here; the hobbyist builds his | COMPUTER
own computer out of a microcomputer, then writes programs for it — just | HOBBYISTS
like any minicomputer programmer would do.

Second, an increasing number of “'microcomputers” are single chip implementations of existing
“minicomputers” .

THE ORIGINS OF THE MICROCOMPUTER

Since this is a book about microcomputers,‘ let us look at the events which culmi-
nated in the first true microcomputer.

" Datapoint Corporation of San Antonio, Texas, are a manufacturer of “intelligent ter-
minals” and small computer systems. In 1969, they (along with Cogar and Viatron) -
attempted to make a “great leap forward.”” Datapoint engineers designed a very ele-
mentary computer, and contracted with Intel and Texas Instruments to implement
the design on a single logic chip. Intel succeeded, but their product executed instruc-
tions approximately ten times as slowly as Datapoint had specified; so Datapoint
declined to buy, and built their own product using existing logic components.

Intel were left with a computer-like logic device, whose development had been paid
for. They were faced with the choice of manufacturing and selling it, or shelving it.
They chose to sell it, called it the intel 8008, and the microcomputer had arrived.




Despite the fact that the Intel 8008 was designed to perform simple data processing,
the traditional job for computers, it created a market where none had existed: as a
programmable logic device. Let us explore this concept.

In any catalog of logic components, there are perhaps ten thousand different logic
devices. The simplest we have already described; simple logic gates may be illus-
trated as follows: -

XOR —— Output

—3] AND
{ OR
Inputs
—»1 etc

Data inputs are transformed into data outputs according to the criteria of some
transfer function. But consider a more interesting logic device, a 4-bit, two-input,
buffer multiplexer:

Data Inputs A{ 2
/
Select g} Data Output '
L
Data Inputs B{ \
e
Select I
Enable

There are two interesting concepts in this buffer multiplexer. First, data are being
handled in 4-bit units. Second, there are two non-data signals present: Select and
Enable. Select determines which data input will become the data output. Enable
determines when it will become an output.

If an LSI chip can contain thousands of gates worth of logic on it, how about con-
densing a catalog of logic onto a single, general purpose chip, as follows:

AND
—»] OR |
XOR
Data ADD Data
Inputs suB Outputs
—™ BUFFER [
etc.

b

—_—
Select signals choose
one logic device




The general purpese chip illustrated above has a good deal of unnecessary, dupli-
cated logic on it. Any one of the ten thousand chips listed in a catalog may be syn-
thesized out of a few, basic logic functions — AND, OR, XOR, ADD, SUB — plus a
few buffers, selects and enables: )

BASIC LOGIC
FUNCTIONS

Select
and
Enable|
Signals

Three bidirectional
data paths

This basic logic device can synthesize any individual logic device, or any sequence of
‘individual logic devices.

This is the concept of the microcomputer.

ABOUT THIS BOOK

The purpose of this book is to give you a thorough understanding of what
microcomputers are and how they differ from other computer products. Since the
book does not assume that you have had any prior contact with computers, basic
concepts are covered in considerable detail; and from basic concepts we build the
necessary components of a microcomputer system.

The book does concentrate on highlighting the differences between microcomputers
and minicomputers.

" The book does not discuss the various technologies which are used to build logic
chips because, in the end, the nature of the technology is usually quite unimportant
to-a user. Your application may have some key parameters such as the amount of
power that you can afford to consume or the execution speeds that you can tolerate;
‘indeed the various technologies that are used influence power consumption, execu-
tion speed and other critical factors, but where these factors are critical, selecting
the right microcomputer simply involves looking at product specifications. Under-
standing whether the product is fabricated using N-MOS technology or C-MOS tech-
nology:does not make it significantly harder or easier to understand what a micro-
computer is or how to use it.

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been.printed in boldface type and lightface type. This
has been done to help you skip those parts of the book that cover subject matter
with which you are familiar. You can be sure that lightface type only expands on in-
formation presented in the previous boldface type. Therefore, only read boldface type un-
tit you reach a subject about which you want to know more, at which point start reading the
lightface type.




Chapter 2
SOME FUNDAMENTAL CONCEPTS

The reason there is no fundamental difference between a microcomputer and any
other computer is because all computer products are based on the same fundamental
computing concepts — which in turn devolve to one fundamental logical concept —
that of the binary digit.

A binary digit is a number that can have one of two values: O or 1. A bi- | BINARY
nary digit can have no other value. DIGIT

What makes the binary digit so useful is that it can be represented by any bistable device. Any-
thing that can be “on” or “off”, “high” or ““low", can represent a zero in one state and a one in
the other state. Figure 2-1 illustrates a bistable device. And that is all the physics you need to
know in order to understand microcomputers.

fo/o— oo
is equivalent to 1 is equivalent to 0

‘Figure 2-1. A Symbolic Representation Of Binary Digits Repre-
sented By A Bistable Device

NUMBER SYSTEMS

A computer that could count no higher than one would not be a very useful machine. For-
tunately, binary digits can be used to represent numbers of any magnitude, just as a
string of decimal digits can be used to represent numbers in excess of nine. Let us
therefore consider what.numbers really consist of.

‘DECIMAL NUMBERS
When a decimal number has more than one digit, have you ever considered what
each digit really represents? The two digits ‘11" really mean ten plus one:
11 = 1X10 + 1
Likewise, the number 83 really means eight tens plus three:
83 =8X10 + 3
The number 2347 really means two thousands, plus three hundreds, plus four tens, plus se\;en:
2347 = 2X1000 + 3X100 + 4%X10 + 7

There is nothing unique or special about decimal numbers. The fact that man has ten fingers and
ten toes almost certainly accounts for the universal use of base ten numbers, but any other num-
ber base would serve just as well.

BINARY NUMBERS

Because decimal digits cease to be unique with the digit 9. ten must be represented by “10".
which means 1 times the number base (in this case, ten) plus 0. Using the letter “B” to represent

the number base, we have:
10 = 1XB + 0

2-1
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Now in the binary numbéring system, "B’ does not represent ten; it represents two. Therefore,
in the binary system, 10 = decimal 2:

10 = 1X2 +0
Similarly, in the binary system, 11 represents decimal three:
11 = 1%X2 + 1

Stated generally, suppose any numbering system’s digits may be represented
symbolically by d; dj. di. etc. If B represents the number base, then any number
can be explained by this equation:

dddidy = diXB® + d;XB? + dXB + d;
Consider a decimal example (B=10) and binary example (B=2).
2174 =2x10° + 1X10%2 + 7X10 + 4
didididy = d;XB? + d;XB? + dyXB + d;
10 1.1 = 1x2% + 0%x2%2 + 1X2 + 1

CONVERTING NUMBERS FROM ONE BASE TO ANOTHER

It is easy to convert numbers from one number base to another | BINARY

number base. Since we have only discussed decimal and binary | TO DECIMAL
numbers so far, consider the conversion of numbers between | CONVERSION
these two systems.

1011 =1%2% +0x22 + 1X2 + 1

23 = 8 and 22 = 4, therefore:

I

1011

1X8 + 0X4 + 1x2 + 1
8 +0+2 +1
11 {decimat)

Continuous division by 2, keeping track of the remainders, pro- | DECIMAL
vides a simple method of converting a decimal number to its bi- | TO BINARY
nary equivalent; for example, to convert decimal 11 to its binary | CONVERSION
equivalent, proceed as follows:

Quotient Remainder
W= 5 ¥ !
2 - 2 + 1
2 - 1 + 0
- = 0 + 1

ThuS111o = 101]2

The subscripts 10 and 2 identify the numbers as base 10 and base 2. respectively.
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The general equation to convert a fractional binary number to itsr CONVERTING
decimal equivalent may be written as follows: FRACTIONS

dddid ... etc. = (dXB=Y + (d,XB~?) + (dXB~3) + (d;xB~)
.. etc

where dj d)j, di. etc., represents numeric digits and B represents
the number base.

For example. to convert 0.1011; to its decimal equivalent, proceed as follows:

0.1011 = (1X27") + (0X272) + (1X273) + (1x279)

1 1 _ A
5 55 = 0.125 ;

‘__A

where 27! = =05:272= =02 :27% =

N
N

'_.

Il

2% = 0.0625

N
S

Thus, 010112 = 0.510 + 0 + 012510 + 0062510
= 06875,

To convert a fractional decimal number to its binary equivalent (e.g.. to convert
0.6875,, to its binary equivalent), use the following approximation method:

0.6875 0.3750 0.7500 0.5000
X2 X 2 X 2 X 2
.3750 7500 5000 .0000

1 0 1 1

Unfortunately, binary-decimal fractional conversions are not always exact; just as a
fraction such as 2/3 has no exact decimal representation, so a decimal fraction that is not the sum
of 27" terms will only approximate a binary fraction.

Consider 0.42357,¢; the binary representation of this number may be created as follows:

0.42357 084714 0.69428 0.38856 077712

X 2 X 2 X2 X 2 X 2

84714 69428 38856 77712 58424
0 1 0 1

The answeris 0.01101 ... .,
As a check, let us convert back:
001101 = 0X2~" + 1Xx272 + 1x273 4+ Ox274 + 1x2~%

=0 + 025 + 0.125 + 0 + 003125
= 0.40625,

The difference is 0.42357 — 0.40625, which equals 0.01732; this difference is caused by the
neglected remainder, 0.55424. In other words, the neglected remainder {0.55424) multiplied by
the smallest computed term (0.03125) gives the total error:

0.55424 X 0.03125 = 0.01732
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OTHER NUMBER SYSTEMS

Because binary numbers tepd to be very long, binary digits are often grouped into
sets of three or four. The numbers are now base 8 (octal) or base 16 (hexadecimal), as
shown in Table 2-1. Consider the binary number:

110111101100
By grouping the binary digits into sets of three, the number is converted | OCTAL
to octal format: ‘ NUMBERS
110 111 101 100 = 6754g
6 7 5 4

Base 8 (octal) includes only the digits:
0,123 45,6 7

Decimal 8 is the same as octal 10.

By grouping the binary digits into sets of four, the number-is converted to | HEXADECIMAL

hexadecimal base: NUMBERS
1101 1110 1100 = DEC,q
D E C
Base 16 (hexadecimal) includes the digits: ‘

01234586789 ABCDEF

Decimal 16 is the same as hexadecimal 10.

Table 2-1.  Number Systems
HEXADECIMAL DECIMAL OCTAL BINARY

0 0 0 0000
1 1 1 0001
2 2 2 0010
3 3 3 0011
4 4 4 0100
5 5 5 0101
6 6 6 0110
7 7 7 o1
-8 8 10 1000
9 9 " 1001
A 10 12 1010
B 1" 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1mn
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BINARY ARITHMETIC

Binary numbers can be operated on in the same way as decimal numbers; in fact, bi-
nary arithmetic is much easier than decimal arithmetic. Consider binary addition,
subtraction, multiplication and division.

BINARY ADDITION

The possible combinations when adding two binary digits aré:

Augend + Addend = Result + Carry
0 + 0- = 0
0 + 1 = 1
1 + 0 1
1 + 1 = 0 -+ 1

The carry, as in decimal addition, is added to the next higher binary position. For example:

This Decimal addition is equivalent to this Binary addition.

\» . 11 <——carry
3 o

+6 +110
9 1001

This Decimal addition is equivalent to this Binary addition.

11 -—— carry 1 1 s———carry
208 11010000

+92 +1011100

300 100101100

BINARY SUBTRACTION

Microcomputers cannot subtract binary digits; they can only add. Fortunately that is
no problem, since subtraction can be converted into addition.

Subtracting a decimal number is equivalent to adding the tens | TENS
complement of the number. COMPLEMENT

The tens complement of a number is generated by subtracting the number from 10.

The final carry, however, must be ignored when performing decimat subtraction via tens comple-
ment addition.

Consider the ‘decimal subtraction.

The tens complement of 2 is (10—2), which equals 8. The decimal subtraction can therefore be
performed via the tens complement addition:

9
t8
J
ignore final carry
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Performing decimal subtraction via tens complement addition is silly, since 10—2 is no simpler to
evaluate than 9—2 was. The binary equivalent of a tens complement is a twos comple-
ment. Performing binary subtraction via twos complement addition makes a lot of sense:
moreover, twos complement logic is well suited to computers.

The twos complement of a binary number is derived by replacing O digits | ONES

with 1 digits. and 1 digits with O digits, then adding 1. The first step | COMPLEMENT
generates a “ones complement” of a binary number. For example, the
ones complement of 10110111Q1 is 0100100010.

Here are some other examples:

Binary number . 0101
Ones complement 1010
Binary number 1010100
Ones complement 0101011

The twos complement of a binary number is formed by adding 1 | TWOS
to the ones complement of that number. For example, the ones | COMPLEMENT
complement of 0100 is 1011:

Original number: 0100
Ones complement: 1011

_t1
Twos complement: 1100

Now look at how binary subtraction can be performed by adding the twos complement of the
SUBTRAHEND to the MINUEND. First consider the following binary subtraction.

MINUEND ) 10001
SUBTRAHEND ) —01o011
DIFFERENCE 00110

‘The same operation can be performed by forming the twos complement of the subtrahend and
adding it to the minuend. The final carry must be discarded. just as it had to be for tens comple-
ment subtraction:

MINUEND 10001
TWOS COMPLEMENT OF SUBTRAHEND +10101
4___,./10 o
discard
final carry

Thus the difference is 00110.

Consider another example:

11001 MINUEND 11001 MINUEND
—101 SUBTRAHEND +11011 TWOS COMPLEMENT OF SUBTRAHEND

= 10100 710100
discard

final carry

When a larger number is subtracted from a smaller number, there is no carry to be discarded.
Consider the decimal version of this case. 2 — 9 becomes 2 + (10 — 9), or 2 + 1. The
answer, +3, is the tens complement of the correct negative result, which is —(10 — 3)

= —7. Here is a binary example of the same thing:
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101 MINUEND 101 MINUEND
—11011 SUBTRAHEND 400101 TWOS COMPLEMENT OF SUBTRAHEND

—10110 DIFFERENCE 01010  NEGATIVE ANSWER IN TWOS COMPLEMENT FORM.

A larger binary number has been subtracted from a smaller one. The answer on the right is nega-
tive, but it is in twos complement form; taking the twos complement of 01010 {twos complement
= 10110), and assigning a minus sign, provides the same answer as on the left, —10110.

When performing twos complement subtraction, the final carry | SIGN OF
provides the sign of the answer. If the final carry is 1, the answer is | ANSWER IN
positive. {The minuend is greater than the subtrahend.) If the final carry is | SWBTRACTION
0. the answer is negative (the minuend is smaller than the subtrahend),
and is in its twos complement, positive form.

BINARY MULTIPLICATION

Binary multiplication is actually easier than decimal multiplication, since each partial
product, in binary, is either zero (multiplication by 0) or exactly the multiplicand
{multiplication by 1). For example:

This Decimal multiplication is equivalent to this Binary multiplication:

9 \\»1001

x5 X101

5 1001
0000
1001
101101

BINARY DIVISION

Binary division can be performed using the same steps as decimal division. Here is an
example:

101 1-€——Quotient
Divisor ———————=101 [ 110111-€¢——Dividend
101
0011
0000

1(1)1 Intermediate
——— } multiplications

0101 | and subtractions
0101

0

BOOLEAN ALGEBRA
AND COMPUTER LOGIC

Boolean algebra is important in microcomputer applications because it provides the
basis for decision making, condition testing and numerous logical operations.

Boolean algebra uses the binary digits 0 and 1 to define logical decisions. Three
Boolean operators, OR, AND, and Exclusive OR (XOR) combine two binary digits to
produce a single digit result. A fourth Boolean operator, NOT, complements a binary
digit.
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“OR’* OPERATION
The OR operation is defined, for two integers | and J, by the statement:

If 1 OR J, or both, equal .1, then the resuit is 1. Otherwise
the result is zero.

A plus sign + is used to represent “OR”". While the Boolean symbol for OR is also used to repre-
sent arithmetic addition, the two operators should not be confused; they are very similar, but they
are not identical. Two binary digits are ORed as follows:

0+0=0
0o+1 =1
1+0 =1

T+1 =1

Notice that the last OR operation (1 + 1 = 1}is the only OR operation where the result differs
from binary addition.

Logic functions are commonly defined using a Truth Table which | TRUTH
lists the output signals associated with allowed input signal.combinations. | TABLES
The OR Gate Truth Table is given below:

TRUTH TABLE FOR AN OR GATE
INPUTS

OUTPUT =
I1+J
0
1
1
1

- O O
- O = 0Ol

“AND”’ OPERATION
The AND operation may be defined for two integers | and J by the statement:

If | AND J are both 1, then the result is 1. Otherwise the'
result is 0.

The dot » and /\ symbol are both used to represent the AND operation. The four possible corme
binations of 0 and 1 for the AND operation are:

0-0
0 -1
10
1 1

il

I
000

. The AND Gate Truth Table is given below:

TRUTH TABLE FOR AN AND GATE

INPUTS OUTPUT =
I J 1-J
0 0 0
0 1 0
1 0 0
1 1 1
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“EXCLUSIVE OR"’ OPERATION

The EXCLUSIVE OR differentiates between input binary digits which are identical
and input binary digits which are different. The output is 1 when the inputs are different
and O when the inputs are the same. The @ or 3 symbol is used to represent the XOR opera-
tion. The four possible combinations of O and 1 for the XOR operation are:

o ®o=o0
0o ® 1 =1
1 @® 0 =1
1@ 1=0

The XOR Truth Table is given below:

TRUTH TABLE FOR
TWO-INPUT EXCLUSIVE OR GATE

INPUTS OUTPUT =
A B A®B
0 0 0
0 1 i
! 0 1
! 1 0

“NOT"* OPERATION
““NOT’’ complements any binary digit or group of digits.

NOT 1 =0
NOT O =1

Because of the nature of microcomputer logic, NOT is not a particularly significant logical opera-
tion; instead of using the NOT operation, the microcomputer’s ability to generate a ones comple-
ment is employed.

Combining AND with NOT generates NAND. Combining OR with NOT generates NOR. The
results of NAND and NOR are the NOT of AND and OR, respectively.
A bar is placed over a digit to represent NOT. Therefore,

1=0

0 =1

COMBINING LOGICAL OPERATIONS

A microcomputer need not have all three of the Boolean operators AND, OR and Ex-
clusive OR; some operators may be combined to generate others, as follows:

A + Bis reproduced by A « B: this is illustrated as follows:

A B A B A-B
) 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 0
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The Exclusive OR may be generated as follows:
A@B=(A-B +(A-.B

This is illustrated as follows:

A B A B A -8B A.B
0 0 1 1 0 0
0 1 1 0 0 1
1 0 0 1 1 0
1 1 0 0 0 0

DE MORGAN’S THEOREM

Boolean operations can be combined to produce any desired output from a set of
known inputs. De Morgan'’s theorem is a valuable aid in designing such combina-
tions. The theorem can be written in either of these ways:

Therefore a micracomputer only needs one Boolean operator, OR, to generate all.others, since:

A«B=A+8B

generates AND out of OR and NOT. Similarly,
A@B=MA+8B +(A +8

generates XOR out of OR and NOT.



Chapter 3
THE MAKINGS OF A MICROCOMPUTER

Given that Blnary digiTs (referred to as BITs) are capable of being
manipulated to perform any of the operations described in

Chapter 2, how are these basic operations going to be harnessed in order to generate
a microcomputer? First let us examine how information is stored as binary data.

MEMORY ORGANIZATION

Binary data are stored in memories. Every computer memory consists of an array of bista-
ble elements. Minicomputers used to use and still frequently use “‘core” memories, which consist
of minute metal “donuts” which can hold a clockwise or counterclockwise magnetic charge:

DIRECTION
OF CURRENT

DIRECTION
OF CURRENT

"/,

Microcomputers use semiconductor memories, which consist of an array- afgates’” which
may be conducting or not conducting:

-0 0o- oo OO0 -00—

=1 =0 =1 =0 etc.
—0" 00— -0 0— —0~0— -0 0—
=0 =1 =0 =1 etc.

etc.

Core memories hold their magnetic charge even when discon- | NON VOLATILE
nected from electric power; you can pull a core memory card out of a | MEMORY -

computer, plug it into another similar computer, and the memory data
should still be intact. Core memories are therefore said to be ‘‘non volatile’’.

Semiconductor memories loose all stored data the moment |VOLATILE
you shut off their power source; therefore they are said to be | MEMORY
“‘volatile’’.
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The type of memory used with a microcomputer is unimportant. It is only necessary that the
memory consist of a number of bistable, individually addressable elements, each representing a

single binary digit:

10110011101011100100001011 « =«

There are two absolutely necessary properties which any memory must have:

1) The location where every binary digit is stored must be uniquely addressable.
2) It must be possible to read the state of every binary digit.

With some memories it is not possible to change the state of

binary digits in the memory. If the state of binary digits can be

read, but not changed, then the memory is called a Read-Only Memory, or ROM.
Of course, by its very nature, any ROM memory is non volatile.

If the state of binary digits within a memory can be changed,

as well as being read, then the memory is called a Read-Write

memory. Read-write memories are commonly referred to as Random-Access
Memories (RAM).

There is no good reason why a read-write memory, as against a read-only memory, should be
referred 1o as a randomly accessible memory; memory is randomly accessible if individual binary
digits within the memory can be accessed directly: /

If binary digits within a memory were not randomly accessible. they would be sequentially ac-
cessible, which means that the tenth binary digit, for example, could only be accessed by first
passing over all preceding digits:

——HHOHRI0T e e e e e e e e

Read-only memories and read-write memories are both randomly accessible. Nevertheless, com-
mon terminology refers to read-only memories as ROMs and read-write memories as RAMS.
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MEMORY WORDS

Chapter 2 explained how binary digits are combined to represent numbers in excess of 1. just as
decimal digits are combined to represent numbers in excess of 9. Table 2-1 gave some binary

representations of small numbers. The primary level at which binary
digits are grouped within any computer is one of the most im-
portant features of the computer and is referred to as the com-
puter’s word size. For example. an “8-bit” computer acquires the "8-

WORD
SIZE

bit” label because binary data within the computer will be accessed and processed in eight binary
digit units. A memory organized into 8-bit units might be visuatized as follows:

Each dot in the above illustration

word.

MEMORY

.

represents a

single binary digit. Each box represents an 8-bit

By common convention the bits of a word are numbered from right (O for the low
order bit) to left (7 for the high order bit) as illustrated above. Some computer manufac-
turers reverse the convention, numbering from left to right.

Table 3-1. Computer Word Sizes
Word
Size Microcomputers Minicomputers Large Computers
(Bits)
4 Many None None
6 None A few None
obsolete
models
8 Most common A few None
12 A few A few None
16 A few Most common A few
18 None A few A few
24 None A few A few
32 None A few Most common
64 None None Common for
largest computers
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A large number of different word sizes have been used by microcomputer, minicom-
puter and mainframe (large computer) manufacturers. Table 3-1 lists the more com-
mon word sizes and identifies those word sizes which are used by microcomputers,
minicomputers and large computers.

Most microcomputers use an 8-bit word. There are a number of 4-bit microcomputers which are
very much oriented toward digital logic replacement. There are also a number of 16-bit
microcomputers, which tend to compete with minicomputers for their traditional markets.

THE BYTE

An 8-bit data unit is called a byte. The byte is the most universally used data unit in the com-
puter industry; it is used even by computers that do not have an 8-bit data word. A 16-bit com-
puter. for example, will often have memory words interpreted as two bytes:

16-bit word

r N
% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O-w—Bitnumber

1\ A ~ J
High order Low order
byte byte

When a microcomputer has an 8-bit word size, we can refer in- | BYTES AND
terchangeably to “memory bytes” and “memory words”; they mean the | WORDS
same thing.

If @ microcomputer's word size is not eight bits, then a memory word and a memory byte do not
mean the same thing; a memory byte refers to an 8-bit memory umt whereas a memory word
refers to a memory unit of the microcomputer's word size.

Many 4-bit microcomputers refer to the 4-bit unit as a ‘’'nib- | NIBBLES

ble”’. Thus each word of 4-bit memory is a “nibble”, and two 4-bit
memory words constitute a byte.

MEMORY ADDRESSES

Even though every binary digit within a memory must be uniquely addressable, binary digits are
not very useful as single entities; therefore the smallest unit of information that is usually

accessed out of memory is a word. For example, when using an 8:-bit memory. each time -

memory is accessed, eight binary digits are referenced.

Each word of memory has a unique memory address. Words within memory have se-
quential memory addresses. with the first word in the memory having an address of 0, and the
last word in the memory having the highest address of any word in that memory. The actual
value of this highest address will depend on the size of the memory.

Thus the address of a word is its location in memory: for example, the words of a 10001 (4096 10)
word memory would be addressed and numbered as follows (in hexadecimal notation):

END l OFFF ] OFFE IOFFD I OFFC ] OFFB l OFFA I OFF9 I I...

ven I 09C4 I 09C3 ' 09C2 l 09C1 l 09Co I 09BF I I...

eee l 0005 l 0004 I 0003 I 0002 l 0001 [ 0000 l START
B \ .

3.4




Conceptually, there are some subtle differences between the way minicomputer and
microcomputer programmers use memories. Some of these differences are in-
troduced now, while others are described fater, since they will not be meaningful un-
til you understand how microcomputers are used.

To the minicomputer programmer, memory is simply a sequence | MINI-

of individually addressable RAM words, with addresses beginning at | COMPUTER
0 and ending at some large number which depends on the size of the | MEMORY
minicomputer’s memory. It is only in rare cases that part of the minicom- | CONCEPTS
puter's memory will be ROM. Certainly a minicomputer programmer
never needs to worry about the physical implementation of memory. So long as data
can be stored and retrieved on demand, where and how this happens is irrelevant.

The microcomputer programmer will be very interested in how | MICRO-
memory is implemented, because there are many applications where | COMPUTER
a microcomputer-based product, once developed, will be sold in tens of | MEMORY
thousands of units. This being the case, it is very important that the num- | CONCEPTS
ber of discrete components within the microcomputer system be kept to
a minimum, since every extra (and therefore unnecessary) component will be multiplied by tens
of thousands —thus increasing costs.

The microcomputer programmer has a further interest in memory organization because almost all
microcomputer based products use ROM for some part of memory. The reason ROM is desirable
when using microcomputers is that ROM is safe. Since no binary digit within a ROM can be
modified, nothing stored in a ROM memory can be accidentally erased. This is a very desirable
characteristic in a product which may end up in obscure or inaccessible locations.

The microcomputer user thinks of memory as semiconductor chips. Figure 3-1 illus-
trates a 1024-bit memory device in a dual in-line package.

- y
| i :
| 3551A0C]

' f r ?338§

gy

Figure 3-1. A 1024-bit Memory Device.

Usually ROM memory is implemented in single chips. For example, a microcomputer
may have 1024 8-bit words of ROM memory on a single chip. This single chip will have a
capacity of 8192 binary digits, divided into (and accessed as) 1024 8-bit units. A microcomputer
programmer will be interested in how memory is implemented, because moving out of the
memory space provided by a single ROM device requires an additional ROM device to be added
to the system. : )
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Read-write memory requires more logic than read-only memory, since the individual
bits of a read-write memory can be changed as well as being read. Therefore, read-
write memory is commonly implemented on more than one chip. In a very simple case,

eight RAM chips may implement 8-bit read-write memory words, with each chip contributing
one bit of the word:

RAM 7
RAM 6
RAM 6
RAM 4
RAM 3

~ -
= =
< <
o o

\RAM 0

a single
8-bit word
One Memory Module
We will refer to this set of eight chips as a memory module. lMEMORY MODULE I

Small microcomputer systems may use fewer memory chips to implement small read-write
memories. For example, two RAM chips may each contribute four bits of an 8-bit word:

- o
> =
< <
o o
() o
(2l [ o0° 1_ asingle 8-bit word
'\/ o
< a
w —
< o
2 &
[es] o
— J

Y
One Memory Module
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Now there are two memory chips in the memory module.

RAM memory is also available like ROM. with entire words implemented on a singfe chip:

RAM O

A single 8-bit word

One Memory Module

" RAM memories cost increases, in terms of cents-per-bit, when fewer chips are used
to implement a single memory word. Thus implementing an 8-bit read-write memory word
using eight RAM chips generates the cheapest memory. Having the entire 8-bit word on one
RAM chip generates the most expensive memory.

Currently 4096-bit RAM chips are common, and 16,384-bit RAM chips | RAM CHIP
are almost here. £65,536-bit RAM chips should be available in commercial MEMORY SIZE
quantities by late 1977 - for between $5 and $10 per chip.

There are two types of RAM memory: dynamic RAM and DYNAMIC
static RAM. Dynamic RAM, which is cheaper, can only hold data fora | RAM

few milliseconds; therefore dynamic RAM must constantly be refreshed STATIC
by having the contents of memory words rewntten. Dynamic RAM refresh RAM

is handled automatically by some microcomputer systems; other
microcomputer systems require external refresh logic when you use dynamic RAM. Static RAM
costs more, but once data have been written into it, the data wili stay there as long as power is
being input.

Once again. as a microcomputer user, you will be very interested in knowing exactly which
memory addresses have been assigned to read-write memory. This is because memory ad-
dresses translate into RAM chips. An extra byte of data memory may require eight new RAM
chips, which, multiplied by 10,000, is expansive.

Because, as a microcomputer user, you will be constantly concerned with how memory chips
relate to memory addresses, memory addresses will take on a significance that differs markedly
from the world of mini and larger computers. Specifically, every memory address may be
visualized as consisting of chip select bits and word address bits.

The chip select bits select one or more chips that constitute a memory module.

The word address bits identify one memory word within the selected memory module.
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Suppose 8-bit memory words are implemented on eight separate memory chips. The chip select
bits will select an eight-chip memory module. The word address bits will identify one memory
word, as follows:

- (@]
= =
< <
o Iod

~ «© [Te}
= = =
< < <
o o fod

addressed
8-bit word

\ \ J
~
Selected Memory Module

A 16-bit memory address: $55555SS  bbbbbbbb
S\ ——

chip word
select address

The number of word address bits required by a memory module | SIZE OF

will depend on chip size. For example, if a chip contains part or all of | MEMORY
25619 memory words, then the word address will consist of eight binary | ADDRESS
digits:

Smallest word address = 00000000 = 00,4 = 00,
Largest word address = 11111111 =FF,q =255,

A'iarger memory chip may have part or all of 10245 memory words; then the word address will
consist of ten binary digits:

Smallest word address = 0000000000 = 000,¢ = 000,
Largest word address = 1111111111 = 3FF,5 = 1023,

Notice that ten binary digits create three hexadecimal digits as follows:

these two 10 binary digits
binary digits :! A

— -~
areimpied0 O O0Obbbbbbbbbb
e A e e

Hex Hex Hex
digit digit digit
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The number of chip select bits will be a function of the micro- | SIZE OF
computer’s architecture; but concatenating the number of chip | CHIP SELECT
select bits with the number of word address bits generates the
“microcomputer’s maximum memory capacity. For example, if the microcomputer can ad-
dress 65,536 1o (FFFF 1) memory words, 16 binary digits will be required to express the largest
allowed memory address:

111117
LSERAS LRSS
F F

F

Now if 1024-word memory chips are used, the word address consumes ten binary digits. which
leaves six binary digits for the chip.select; in other words, maximum memory will consist of 64
memory modules, with 102445 words per module, and the 16-bit memory address must be in-
terpreted as follows:

16 binary digit memory address
r A N
ssssssbbbbbbbbbb

6b M
dig|lnci?;3 10 binary digit word
address, holds values
select,
from O to 3FF 4
selects one (1023.)
of 40,4 10
(=641c)
memory
modules

The important thing to remember is that the microcomputer sets the TOTAL number
of memory address binary digits; how they are split between chip select and word
address depends on the type of memory chips used — it is entirely up to the logic
designer.

lsowk again at how a total word address is created in a real case. If, as illustrated earlier, the word
address within the chipis 0110101110, (1AE¢) and the chip select is 000111, (07,¢), then a 16
binary digit word address is created as follows:

chip select word address
cp—A— A- N\
Total word address = 0001 11CG110101110,
= s — o i N
1 D A Eg

There is no reason why available memory addresses need to be continuous, or even need to start
at zero. For example, a microcomputer system may include one ROM chip implement-
ing 8-bit words.and a RAM module made up of two RAM chips, each implementing
four bits of an 8-bit word.
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If the ROM chip has a chip select of 000001, and a capacity of 102449 memory bytes,
then allowed ROM memory addresses will be 04005 through 07FF¢:

chip select word address
f——A N A N
First ROM address = 0000010000000000,
N i I O

0 4 0 01
chip select word address

f__J\ N A- A)
Last ROM address = 000001 1111111111,
A

0 7 F Fie

Observe that 1024, bytes of memory will now have addresses 1024 | ADDRESS
through 2047, or 0400, through O7FF,s. We refer to this range of | SPACE
memory addresses as the memory module’s address space. If
the RAM module has a select of 000110, and each chip holds 256 x 4 bits, then the
two RAM chips constitute a memory module, and provide 8-bit RAM memory words with ad-
dresses 1800, through 18FF 6.

chip select word address
A
—rr N
First RAM address =000 1100000000000,
1 8 0 O

chip select word address
A
r A—r N

Last RAM address = 0001 100011111111,
N Al R I ettt o’

1 8 F Fig

Addresses in the range 1800,, through 18FF,; constitute the RAM module’s ad-
dress space.

INTERPRETING THE CONTENTS OF MEMORY WORDS

A memory word consists of a number of binary digits; therefore, binary digits are the
only form in which information can be stored in a word of memory.

An 8-bit memory word can contain 256 (28) different patterns of 0’s and 1’'s. The
pattern of zeros and ones within a memory word may be interpreted in any one of
the foliowing ways:

1) Pure binary numeric data that stand alone.

2) Binary numeric data that must be interpreted as one part of a multiword data
unit.
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3) A data code; that is, a bit pattern subject to some arbitrary predefined set of
interpretations.

4) An instruction code; that is, a bit pattern which is to be transmitted to the
microcomputer. The microcomputer will decode the bit pattern and interpret
it as an identification of those operations which the microcomputer logic must
immediately perform.

This is the only important concept to understand at this time:

Upon examining the contents of any word of memory, it is impossible to determine
whether the memory word contains numeric data, a code, or an instruction.

In Chapter 4 you will learn how a microcomputer takes care of the fact that the contents of any
memory word may be interpreted in a number of different ways. But first we will describe each
interpretation of a memory word.

STAND ALONE, PURE BINARY DATA
Consider first pure binary data, subject to no special interpretations.

It is important to understand that you can represent pure binary data, on paper. as a binary num-
ber, an octal number or a hexadecimal number; the choice is purely a question of reader conve-
nience and has no impact whatsoever on the data word. Here is an example for an 8-bit data
word:

4 E -€—Hexadecimal
e A, it
0100111 O-&—Binary
Y N, o’
1 1 6 <®——OQctal
01001110, = 116g = 4E4g
Here is an example for a 16-bit data word:
D B 8 B -#—Hexadecimal
P e, ettt Pl et~
170110111000 101 1-&—Binary
S S N sty ey’
1 5 5 6 1 3 ~¢———QOctal
1101'1011100010112 = 155613 = DB8B;;

The choice of binary. octal or hexadecimal representation for a memory word's contents is not
data interpretation; it is merely an alternative way of writing the same thing on a piece of paper.




INTERPRETED BINARY DATA

The contents of a memory word, interpreted as pure binary data, may stand alone, or
may be part of a larger numeric unit. For example. an 8-bit memory word standing alone can
represent numeric values ranging from O to 25540 A 16-bit memory
word, on the other hand. can represent numeric values ranging from O to | MULTIWORD
65,635,. There is no reason why 8-bit memory words should not | BINARY

- be interpreted in pairs. Now the contents of each 8-bit memory word | DATA
will be interpreted as the lower-half or the upper-half of a 16 binary digit
unit: -

One 16-bit word
AL

r A
0100101110011 110
\ J o J

Y h
One 8-bit word. One 8-bit word.
Upper half of a Lower half of a
16-binary digit 16-binary digit
number. number.

There is, in fact, no limit to the number of memory words that may be concatenated
to generate very large numbers. Here is an example of a 48-bit number:

One 48-bit word
A

r D)
100111011101111010100110001110110101101100101101

i e i i e

byte b byte 4 byte 3 byte 2 byte 1 byte O

Suppose six 8-bit memory words are required to represent a single numeric unit, as illustrated
above. Normally, these six memory words would be contiguous; that is, they would have memo-
ry addresses adjacent to each other. However, there is nothing in the logic of a microcom-
puter that demands the many bytes of a multibyte number be contiguous; con-
tiguous multibyte numbers are easier to process; that makes contiguous organiza-
tion desirable.

What about multibyte arithmetic? Numbers that occupy many | MULTIBYTE
memory words can be added, subtracted, multiplied or divided | BINARY
using the rules described in Chapter 2. Nothing was said in Chapter | ADDITION

2 about the number of binary digits associated with any number. Thus if a
16-bit number is stored in two adjacent 8-bit memory words, binary addition rules described in
Chapter 2 would still be used. but the 16-bit numbers would have to be added in two steps as
follows:

word 1 word 0

10011101 10000110
+00101010 11010100
carries from word 0 and word 1———3=0 1

=11001000 01011010
step 2 step 1 B




The carry, if any, from each step is added to the low order digit of the next step.

The logical extension of the above example to numbers stored in three, four or more memory
words is self-evident. Here, for example, is how two numbers, each occupying four 8-bit
words, would be added in four steps:

word 3 word 2 word 1 word 0
10110100 10000101 01101011 11011010
+ 01111010 10111010 01000010 00111001
1 1 0 1
= 00101111 00111111 10101110 00010011
step 4 step 3 step 2 step 1

There is a catch to subtracting muitibyte numbers. Recall from Chapter 2 | MULTIBYTE
that binary data are subtracted by taking the twos complement of the | BINARY
subtrahend and adding it to the minuend. Consider two 16-bit numbers | SUBTRACTION
stored in 16-bit memory words. The logic associated with subtract-
ing one 16-bit number from another is very straightforward and may be illustrated as
follows:

23A615 — 124A45 = 116Cyq

23A635 = 0010001110100110
1110110110110101
1

Answer = 0001000101011100

N N N

1 1 &5 C

Twos complement of 124A5 =

Now consider the same subtraction where the numbers are stored in two adjacent 8-
bit memory words. The subtraction may be directly reproduced as follows:

word 1 word 0

2345 = 00100011 10100110

ones complement of 1215 = 11101101 10110101}
1

00010001 01011100

N~ —— Ny Na——

1 1 5 C
step 2 step. 1

Il
1l

Ab1g

= twos complement of 4A ¢

Notice that only the low order byte of the number is twos complemented. The high order byte is
ones complemented. While this may seem confusing at first, it really is not. If you visualise a
multibyte number as a single numeric unit, then it is self-evident that when the twos complement
of the multibyte number is generated, 1 will be added to the low order byte of the multibyte
number only:

Twos complement of 124A15 = 1110110110110101
1

1110110110110110

Twos complement of 4A,¢
Ones complement of 125

11101101 10110101
1

Twos complement of 124A,¢ = 11101101 10110110
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A microcomputer that could only process positive numbers would not be |} SIGNED
very useful. What about negative numbers? Here, for the first | BINARY'
time, we get into the question of interpreting binary coded data. | NUMBERS .
A very effective industry convention interprets the high order
bit of a number as a sign bit. If this bit is 1, the number is negative. If this bit is 0, the
number is positive:

Obbbbbbb represents a positive, 7-bit number
1bbbbbbb represents a negative. 7-bre number

Table 3-2 gives the interpretations for 8-bit signed binary data. Observe that negative numbers
are coded as the twos complement of their positive counterparts. Here are some exampies:

11111101
1

11111110

i
]

+02, = 00000010 =025

+6A45

01101010 —6A; = 10010101
1

10010110

When eight binary digits are being interpreted as a signed number. the range of numbers is from
—1281p 1o +12715. When sixteen binary digits are interpreted as a signed binary. number, num-
bers must fall in the range —32768 510 +32767¢.

Table 3-2.  Signed Binary Numeric Interpretations

BINARY EQUIVALENT HEXADECIMAL
10000000 —128 80
10000001 -127 81
10000010 —1286 82
10000011 —125 83
11111110 -2 FE
T -1 FF
00000000 0 0
00000001 1 o
00000010 2 2
00000011 3 3
01111101 +125 0
01111110 +126 7E
011111 +127 7F




The beauty of using this scheme to represent signed numbers is that it calls for no
special logic when performing arithmetic operations. Providing an arithmetic operation
does not generate an answer which is too large to fit in the available space, you can ignore the
sign of a number until you wish to interpret an answer; at that time, examining the high order bit
of the answer indicates whether it is positive or negative. If the high order bit of the answer is 1,
then the answer is negative and by taking the twos complement of the answer, the pure binary,
positive representation of the answer is created. Here are some examples:

63,6 —»01100011
—3A,— 11000101 ones tomplement of 3A 4
1

=296 001071001
o
2 9 Answer = + 29,4
This O indicates a positive result
3, 00111010
—63.¢ 10011100 ones complement of 63,4
1
=296 11010111
This 1 indicates a negative result.
Take the twos complement: 00101000
1
00101001
—————
2 9 Answer = —29,4
Now consider the above example, rewritten as (3Aq) + (+—63,5) = (~—29,¢). (—634¢) will be

represented by the twos complement of + 63,

+ 63,6 =01100011
ones complement of + 63,5 = 10011100
—63,6 = 10011101

Therefore:
3A6 00111010
+H(—63,¢) 10011101
=(—29,¢) 11010111

This 1 indicates a negative result

00101000 Taking the twos complement of the
i answer generates the positive
00101001 representation
A

2 9

Observe that using twos complement notation to represent signed binary numbers, 3A,5 — 63,4
and 3A,s + (—63,4) have identical binary representations, which is only to be expected of a via-
ble scheme for representing negative numbers.




Multiword signed binary numbers generate no special problems | MULTIWORD
so long as you understand that operations must be performed | SIGNED

one word at a time. This is illustrated below for the simple case of 16- | BINARY

bit, signed binary data, which generates the same results when handled | NUMBERS

as singte 16-bit words or.as two 8-bit words.

one 16-bit word
A

(. N\
sign bit—»3:011001011000010
& 7\ ]
Y vV
8-bit word 1 8-bit word 0

Consider the subtraction of two 16-bit, signed binary numbers. where each number is stored in
two 8-bit words. As for unsigned multiword addition, signed multiword addition proceeds in twq
steps, as follows:

word 1 word 0
1A2C,¢ = 00011010 00101100
+{—0810,¢) = 11110111 11170000
= 121Cy4 = 00010010 00011100
b Oy Nm—

12 1 C
step 2 step 1

sign bit——

Observe that —0810,¢ is generated by taking the twos complement of 08.10,4 as follows:

0810, = 0000100000010000
ones complement 1110111111011
twos complement = 1111011111110000

1

It is possible to code decimal numbers using binary digits. Four. | BINARY
binary digits can represent values from O to Fqg. or from O to 154o. By ig- | CODED
noring binary digit combinations above 9, decimal numbers can be coded, | DECIMAL
two digits per 8-bit memory word, or four digits per 16-bit memory word.
Table 3-3 identifies the combinations of four binary digits that may be interpreted as
decimal numbers.-When binary digits are being used to represent decimal numbers, the result
is called Binary-Coded Decimal (BCD) data.

Signed binary number rules cannot be applied to BCD data, since | NEGATIVE
BCD demands that binary data be interpreted in 4-bit units: BCD DATA

etc.... nnnnnNnnNnnnNnnNnnNnnNnNnNnNnNAN
NI et Nkl NN Nt}

digit digit digit digit
3 2 1 0
Each 4-bit digit can have one of the bit patterns shown under the BCD column of Table 3-3. An

8-bit word uses the high order bit for all numbers in excess of 79,,. If the high order bit is needed
to represent decimal digits 8 or 9. then it cannot be used to represent a sign.



Table 3-3.  Binary Representation of Decimal Digits

BINARY HEXADECIMAL *  BCD
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
o1 7 7
1000 8 8
1001 9 9
1010 A llegal
0om B llegal
1100 C lllegal
1101 D lllegal
1110 E lllegal
111 F lllegal

The sign of signed BCD numbers is therefore represented usirg a special ‘‘con-
trol”” word which must precede the first data word of a multiword BCD number...
There are no common rules for control word format, but here is a simple example and a compiex
example. First the simple example:

Decimal data in BCD form
‘ e N
I N ey I O
Ly Ky

most significant least significant
digits digits

Control word, is 0000 for positive number,
is 0001 for negative number.

Now the complex example:

Control Decimal data in BCD form
Word A

M T T T

sign bit
=0 for +
=1for —

Total data words
0000 means 1
1111 means 16 Y

Total post-decimal A maximum of 16 data words.allowed

data words
000 means O
111 means 7

. . A maximum of
decimal point 7 post-decimal
assumed here words allowed

J




BCD data cannot be added and subtracted using straightforward binary addition and
subtraction rules. Here are some examples of the errors that could result:

Decimal BCD Decimal BCD
23 = 00100011 54 = 01010100
+47 = 01000111 —26 = 11011010
=70 01101010 =28 00101110
—— N~ N
6 lllegal 2 lllegal

Note that 11011010 is the twos complement of the binary representation of 26.

In order to perform BCD arithmetic, special rules must be applied, and the | BCD

carry out of each BCD digit must be recorded. Consider the addition: ARITHMETIC
- 97
+68
=165

It is insufficient to record the fact that there was a carry out of the high order digit addition. Any
intermediate carry out of the low order digit addition must also be recorded. Here are some ex-
amples showing the status of the carry {C) and the intermediate carry (IC)

cic cic cic cic
11 [ I [
00 01 10 1

21 29 91 97
+32 +32 +32 +68
=53 =61 =123 =165

Conceptually, BCD addition is performed as follows:
1) Add the two numbers.

2) Serially add 6 to each invalid digit, starting with the low order digit. (This “jumps over” the six
invalid bit combinations to vield the correct BCD representation.)

For example, 2510+19,9 = 0010 0101
0001 1001

0011 1110
add 6: 0000 0110

0100 0100 = 449

This method is rather clumsy to computerize. The following process, as described for two digits
of a BCD number, is more efficient; it adds 6 to each digit, then based on the carry statuses,
subtracts those sixes which were not rieeded:

1) Using binary addition, add 66 14 to the first number (the augend).

2) Add the second number (the addend) to the sum generated in step 1. The carry generated in
this step reflects the true carry to the next higher digit.
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3) Using binary addition, add a factor to the sum from step 2. The factor to be added depends
on the carry (C) and intermediate carry (IC) stratuses as follows:

Here are some addition examples:

Augend

Step 1 sum

Addend =

Step 2 sum
C/IC

Factor
Step 2 sum

Answer =

C (from Step 2)

BCD subtraction

C IC Factor
0 0 9A15
0 1 ADjg
1 0 FA1
1 1 0015
23 29 92 87
+32 +34 +32 +79
=55 =63 =124 =166
00100011 00101001 10010010 10000111
01100110 01100110 01100110 01100110
10001001 10001111 11111000 11101101
00110010 00110100 00110010 01111001
10111011 11000011 00101010 01100110
0 0 0 1 1 0 1 1
10011010 10100000 11111010 00000000
10111011 11000011 00101010 01100110
01010101 01100011 00100100 01100110
5 5 6 3 2 4 6 6
0 0 1 1

is performed for two digits of a BCD number via these two steps:

1} Add the twos complement of the subtrahend (the number being subtracted) to the minuend
(the number being subtracted from). The carry generated in this step reflects the true carry to
the next higher digit.

Recall that when multiword numbers are subtracted, only the lowest order word of the
subtrahend is twos complemented. Higher order words are ones complemented.

2) Perform step 3 as described for BCD addition.

Here are some subtraction examples:

Subtraheid
Twos compl.
Minuend

Step 1sum
C/iC

Factor

Answer

C (after AC)

75 71 26 21
-21 28 Al -78
+54 +43 —46 ~57
00100001 00101000 01110001 01111000
11011111 11011000 10001111 10001000
01110101 01110001 00100101 00100001
01010100 01001001 10110100 10101001
1 10 0 1 0 o0
00000000 11111010 10100000 10011010
01010100 01001001 10110100 10101001
01010100 01000011 01010100 01000011
5 4 4 3 5 4 4 3

0

0



When performing BCD subtraction, a negative result is indicated by a finat carry of O (as for binary
subtraction), but in keeping with the decimal representation of numbers, the numeric value of the
negative answer is in tens complement form, not in twos complement form. Thus the answer to
25 — 71 appears as 54, which is 100 — 46, and the final carry is O. Similarly, the answer to
21 — 78 appears as 43, which is 100 — 57, and the final carry is 0.

CHARACTER CODES

A computer would not be very useful if it required data to be entered as a sequence
of binary digits, or if answers were output in one of the uncoded or coded binary for- -
mats. It must be possible for a computer to handle text and other nonnumeric infor-
mation.

If we bear in mind that the combination of binary digits within any memory word can be re-used
in any number of ways, then all the binary codes which have been used to represent numeric
data. as described so far, can all be re-used to represent letters of the alphabet, digit characters,
or any other special printed characters.

So long as a program correctly interprets the binary digits of a memory word, then confusion and
ambiguities cannot arise.

For example. if you as the programmer decide to use memory words with addresses 0A20,4
through OA2A ¢ to hold binary-coded decimal data. then it is up to you, the programemer, in your
subsequent logic, to remember that the binary data in these memory words must be interpreted
as binary-coded decimal digits — and any other interpretation will cause errors.

Likewise, if memory words 12A4,¢ through 12A6,4 are reserved to hold binary data which are to
be interpreted as character codes, then the fact that character codes have exactly the same binary
digit pattern as binary-coded decimal words is irrelevant, So long as program logic correctly in-
terprets the contents of memory words, errors cannot arise; and if program logic does not cor-
rectly interpret the contents of memory words, then program logic is in error and must be cor-
rected.

In order to handle text, a complete and adequate set of necessary characters in-
cludes:

26 lower case letters CHARACTER
26 upper case letters SETS
approximately 25 special characters (e.g. [+/ @! #, etc.)
10 numeric digits -«

The above character set adds up to 87 characters. A six binary digit group allows 64 combinations
of O and 1 binary digits (28). which is insufficient to represent 87 characters. A seven binary digit
group allows 128 possible arrangements of O and 1 binary digits. which is sufficient for our needs.

The 8-bit byte has been universally accepted as the data unit for representing character codes.
The two most common character codes, listed in Appendix A, ‘are known as the American Stan-
dard Code for Information Interchange (ASGII) and Extended Binary Coded Decimal Interchange
Code (EBCDIC). ASCH is used by all minicomputer and microcomputer manufacturers.

Eight binary digits are used to représent characters where seven binary digits suffice. This being
the case. the eighth binary digit is frequently used to test for errors, and is

referred to as a parity bit: itis set to 1 or to 0, so that the number of 1 bits | PARITY

in the byte is either always odd or always even.
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If odd parity is selected. then the parity bit will be set or reset so that the total number of 1 bits is
always odd. Here are some examples:

Parity Bit
10000000 Number of 1 bits = 1
00000001 Number of 1 bits = 1
11001011 Number of 1 bits =5
11011111 Number of 1 bits = 7
01010100 Number of 1 bits = 3

If even parity is selected, then the parity bit is set or reset so that the total num-
ber of 1 bits will always be even. Here are some examples:

Parity Bit
00000000 Number of 1 bits =0
10000001 Number of 1 bits =
01010101 Number of 1 bits =
10010101 Number of 1 bits =
1111111 Number of 1 bits = 8

The parity bit is used to ensure that between the creation of a character byte and reading it back,
no bit was erroneously changed. If. for example. parity is odd, then whenever an even number of
1 bits is detected in a character byte, clearly the byte must be in error. Similarly, it even parity is
selected, then whenever an odd number of bits are detected in a character byte. the byte must
be in error.

Here is an example of how a message might be stored in a sequence of contiguous memory
words using ASCIl character codes with even parity:

E n t e r blank

M)ommp 1101 1o|o1 1 10100101 100101[01 1 100@0010000@ etc.

A few comments regarding parity and error codes would be useful at this point.

Clearly, the high order bit of a byte can be used as a parity bit only when the byte con-
tents are being interpreted as character codes. If the contents of the byte are being in-
terpreted as any form of binary data (coded or uncoded), then the h|<::;h order bit has already been
specified as an integral part of the byte’'s data contents; therefore, this bit cannot be used as a
parity bit, so coded and uncoded binary data cannot have parity checked

Many elaborate schemes are used, not only to check that sequences of binary digits
contain no errors, but further to detect what these errors are and to make appropri-
ate corrections. These error correction codes have nothing in particular to do with
minicomputer or microcomputer concepts; therefore, they are not discussed in this
book.

Microcomputers that have word sizes other than eight bits still use the byte to repre-
sent character codes. A 16-bit microcomputer will pack two bytes into each memory word as

follows:
. 16-bit memory word

A
s ™
Ll TT T irrprrrior I—j
High order Low order
byte byte
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A microcomputer that uses 12-bit words will store the character code in the lower eight of the 12
bits and will waste the higher four bits as follows:

12-bit memory word

A_.__
r ™
I v 1 17T 17 1717 17T 1T 117 1 I
—— A J
—~
unused character
bits byte

A 4-bit microcomputer creates a byte out of two contiguous memory words:

Word 1 Word O
r A A N
l L] I T 11 l
.~ J

——
Character
byte

4-bit microcomputers may actuaily be better suited to BCD applications such as
hand held calculators. These applications treat 4-bit data units as unique entities — one
BCD digit per 4-bit data unit; the 8-bit byte is not significant, so the fact that the 4-bit microcom-
puter always handles data in 4-bit units can greatly simplify programming.

'INSTRUCTION CODES

Memory words have so far been interpreted as data of one form or another. The con-
tents of a memory word can also be interpreted as a code, identifying an operation
- which is required of the microcomputer.

Consider the simple example of binary addition. Assume that the contents of the
memory word with address 0A30 is to be added to the contents of the memory
word with address 0A31, and the sum is to be stored in the memory word with
address 0A31. Program steps to accomplish this binary addition may proceed as
follows:

1} Identify the address of the first memory word to be added.
2) Transfer the contents of this memory word to the microcomputer.
3) Identify the address of the second memory word to be added.

4) Add the contents of this memory word to the memory word which was trans-
ferred to the microcomputer in step 2.

5) lIdentify the address of the memory word where the sum is to be stored.

6) Transfer the sum to this memory word.



Program logic specifies that the memory ‘words with addresses 0A30 and 0A31 are to contain
pure binary data:

Address of Memory

memory word word
OA2F —»
0A30 — Assumed to contain
0A31 =i pure binary data
0A32 —9

Let us assume that the six program steps are to be stored in memory words with addresses start-
ing at 0400; we will create some instruction codes to implement the six-step binary addition.

The instruction code which identifies memory addresses will occupy three bytes, as follows:
Tr0011100] | |
“rv
A
9C4. when interpreted as an j

instruction code, causes the next
two memory words to be read and
interpreted as a data memory address

We can now start to create a program as follows:

Address of Memory
memory word —l word
04!)0 9 Read the contents of the next two memory words.
0401 A Interpret them as a data memory address.
0A30 is the data memory address which the CPU
0402 30 will read.
0403
0404

Step 2 requires the contents of the addressed memory word to be read and interpreted as data.
Note that there is no need for the instruction to specify what kind of data the memory word con-
tains. You, the programmer, must remember what kind of data the addressed word contains, and
not try to do anything incompatible with the data type. So far as the microcomputer is concerned.,
data is pure binary data — nothing more, nothing less.

Let us assume that the binary code:
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if interpreted as an instruction. causes the contents of the addressed data memory word b be
read and interpreted as data. Our program now becomes:

Address of Memory
memory word word
0400 9C
0401 0A Step 1
0402 30
0403 40 Read contents of addressed data word {0A30 from
0404 . step 1)and interpret as pure binary data

Step 3 is a repeat of step 1, only a different data memory address (0A31,4) needs to be specified.
Our program now becomes:

Address of Memory
memory word word
0400 9C
0401 0A Step 1
0402 30
0403 40 Step 2
0404 9C
0405 0A Read OA31, as a data memory address into the
0406 31 CPU
0407

Step 4 is a variation of step 2; however, instead of simply reading the contents of the addressed
data memory word, the data memory word is added, using binary addition, to the data memory
word that was previously read; assume that this operation is identified by the instruction code:

10000000

Our program now increases one step as follows:

Address of Memory
memory word word
0400 9C
0401 0A Step 1
0402 30
0403 40 Step 2
0404 9C
0405 0A Step 3
0406 31
0407 80 Add contents of addressed data memory word to
0408 . data word currently stored in the CPU
- 0409
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Step 5 is a repeat of step 3; the address of the data memory word where the sum is to be stored,
0A31,4 is the data memory word most recently addressed (in step 3), so the instruction need not
be repeated for step 5. Instead we will proceed to step 6, and assume that the binary word:

01100000

when interpreted as an instruction code, causes data to be output to the most recently addressed
data memory word. The complete program now looks like this:

Address of Memory
memory word word
0400 9C
0401 0A Step 1
0402 30
0403 40 Step 2
0404 9C
0405 0A Step 3
0406 31
0407 80 Step 4
0408 60 Store data word in CPU in memory word
0409 addressed by data memory address

Praviding the microcomputer can be told in some way that a sequence of instruction codes will
be found beginning at-memory word 0400,6, then the fact that each of these memory words
may have a pattern of 1 and O binary digits which is also valid binary data, or ASCll characters, is
irrelevant.

Notice that the program-creates memory addresses ‘which identify memory words assumed to
contain pure binary data. It is assumed that you, as a microcomputer programmer, will make sure
that these memory words do indeed contain binary data. If.-by mistake, instructions elsewhere in
your.pregram store charactereodes in-these same memory words, then upon being commanded
to do so, the microcomputer will add two character codes as though they were binary data. Only
the strange results which .are created will alert you to the fact that a mistake has been made.

Illustrating the concept of a microcomputer program via this six-step binary addition
is, of course, just a beginning.

How does the microcomputer perform the operations required by the instruction
code? That question will be answered in Chapter 4.

What does the microcomputer demand of external logic in order to complete the
operations specified by an instruction code? That question will be answered in
Chapter 5.

How do you write a microcomputer program? We will address that question in
Chapter 6.




Chapter 4

THE MICROCOMPUTER
CENTRAL PROCESSING UNIT

The logic of a microcomputer is implemented on one or more chips. Chips are
packaged in DIPs, as was illustrated in Figure 1-1. Most microcomputer DIPs have 40 pins, but
other pin counts, ranging from 28 to 64 may be found.

The one thing you can say for sure is that one of your DIPs will con- | CPU

tain logic that is referred to as a Central Processing Unit, or MICROPROCESSOR
“CPU’’; this is the DIP commonly called a ‘‘Microprocessor’’. ]
Whatever else a microcomputer has, or lacks, it must have a CPU.

The logic that constitutes a CPU can differ wildly from one microcomputer to the
next; underlying these variations there are certain necessities, however. Our pur-
pose in this chapter is to identify these necessities.

Recall from Chapter 3 that the contents of a memory word may be interpreted in one of the
following ways:

1) As pure binary data

2) As coded binary data
3) As a character code

4) As an instruction code.

These four ways of interpreting the contents of a memory word can be broadly separated into
two major categories: data and instructions.

Pure binary data, coded binary data, and character codes have one thing in common: they are all
data. The contents of data memory words can be operated on, or can be used in conjunction
with the contents of other data words.

Instruction codes are input to the CPU as a means of identifying the next operation which you
want the CPU to perform. A sequence of instruction codes, stored in memory, constitute a pro- Y
gram.

Consider the six-step binary addition program described at the end of Chapter 3. Let
us examine, in the following paragraphs, the logic that the CPU must contain to per-
form this binary addition.

CPU REGISTERS

The CPU must have one or more registers in which data | ACCUMULATOR

that have been fetched from memory can be stored; we

will call these registers Accumulators. Since the majority of microcomputers use

an 8-bit word size, that is the word size we will adopt — and assume an 8-bit

Accumulator: )
: 76543210 Bitnumber
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To keep things simple, we will, for the moment, assume that there is just one Ac-

cumulator in the CPU.

The data fetched in step 2 of the binary addition program described in Chapter 3 is stored in the

Accumulator.

The CPU usually operates on the contents of an Accumulator, rather than access-
ing memory words directly. Does this make sense? Remember, the Accumulator is a register

within the logic of the CPU:

CPU

Accumulator

Since data is permanently stored in external memory, you may argue that operating on data in a
CPU register forces programs to define a three step instruction sequence:

Step 1

where one step would do:

CPU
Step 2

Accumulator

Memory

CPU

A—)

Step 3

~— =— =~ —QOne step— ———

Memory
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Unfortunately the ““One step” illustrated above does not always work. Some CPU operations re-
quire two memory words’ contents to be fetched from memory:

. Word A

P

ADD ———» Word C
Word B

Sometimes the CPU operates on a single word:
Word A—30Ones Complement —Word C

Or we can look at the One step operation negatively: must we always spend time fetching data
from memory, then returning results to memory? The answer is no. Every meémory access takes
time and logic. By having a few data storage registers in the CPU, we can have one memory ac-
cess far every five CPU operations (approximately); and that is better than two memory accesses
for every CPU operation, which the one step sequence requires. Therefore nearly all microcom-
puters have Accumulators, or Accumulator type registers in the CPU.

In order to access a data memory word, either to read its con- | DATA
tents or to store data into the memory word, the data memory | COUNTER
word address must be identified; this address is held in a
register which we will call the Data Counter. The size of the Data Counter will depend on
the maximum amount of memory that the microcomputer can address. Here is a 16-bit Data
Counter, which can address up to 65,536 words of data memory:

Accumulator (A)

' I Data Counter (DC)

rrrrTrrrrTrurd

A microcomputer’s CPU can have one or more Data Counters. To keep things simple,
we will, for the moment, assume that the CPU has only one Data Counter.

Referring again to the binary addition program described in Chapter 3, the data memory ad-
dresses 0A30,4 and 0A31,5 would be held in the Data Counter register.

In order to access a word of data memory, the CPU needs an Accumulator to store the contents
of the accessed data word, and a Data Counter to store the address of the data word being ac-
cessed.

Similarly. in order to handle instruction codes, the CPU is going to need a register to store instruc-
tion codes, and a register to store the address of the memory word from which the instruction
code is going to be fetched.

The instruction code is stored in an Instruction register; the CPU | INSTRUCTION
will always interpret the contents of the Instruction register as an instruc- | REGISTER
tion code.

The address of the memory word from which the instruction | PROGRAM
code will be fetched is provided by a register which we will call | COUNTER
the Program Counter. "

The Program Counter is analogous to the Data Counter, but the Data Counter is assumed to al-
ways address a data memory word, while the Program Counter is assumed to always address a-
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program memory word. We now have the following four registers:

LIL IS N N N N

Accumulator {A)
rrrrrTrrTrr T J Data Counter (DC)
FrTTrTTTT Instruction Register (1)
T T T T T 711 TT T T T J Program Counter (PC)

There is one important conceptual difference between the Data Counter and the Program
Counter. By storing instruction codes in sequential memory words, the problem of
creating instruction code addresses in the Program Counter is resolved. All that is
needed is to find some way of lpading an initial address into the Program Counter. If, after access-
ing a memory word to fetch an instruction code, the contents of the Program Counter is incre-
mented by 1, then the Program Counter will be left pointing to the memory word containing the
next instruction code.

The Data Counter, on the other hand. is not likely to have long runs of sequential memory ac-
cesses. Only when data are stored in multiword units, or data tables are held in contiguous
memory words, will the Data Counter be required to access sequential memory locations. Even
when the Data Counter is required to access sequential memory locations, it is not clear whether
the Data Counter should start at a low memory address and increment, or start at a high memory
address and decrement. Therefore, CPU logic is going to have to provide the microcom-
puter user with a great flexibility when it comes to setting addresses in the Data
Counter.

HOW CPU REGISTERS ARE USED

tn order to fully understand how microcomputer CPU registers are used, we will step
through the binary addition program of Chapter 3, showing how the contents of the
four registers change. We will, from here on, refer to each step of the

program as an Instruction, since in reality, each step, as illustrated, merely | INSTRUCTIONS

identifies an instruction’s binary code.

Initially the Program Counter (PC) contains 04004, the address of the first instruction word in pro-
gram memory; the contents of other registers is unknown. We assume, to complete the illustra-
tion, that data memory words 0A30,s and 0A3 1,4 initially contain 7A,¢ and 2F,¢, respectively.

Address of Memory
Memory Word Word A
(( 0400 9C DC
0401 0A Instruction 1 |
0402 30 0400 PC
0403 40 Instruction 2
Program { 0404 9C
Memory 0405 0A Instruction 3
0406 31
0407 80 Instruction 4
0408 60 Instruction 5
L 0409
0A30 7A
Data 0A31 2F
Memory 0A32
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The CPU loads the contents of the memory word addressed by PC into the Instruction register (1),
thus ensuring that the memory word contents will be interpreted as an instruction code. The CPU
then increments the contents of PC:

Address of Memory
Memory Word Word
A
(™ 0400 9C DC
0401 0A Instruction 1 ] 9C |
0402 30 0401 PC
0403 40 Instruction 2
Program < 0404 9C »
Memory 0405 0A Instruction 3
0406 31
0407 80 Instruction 4
0408 60 Instruction 5
. 0409
i
1 1
1
0A30 7A
Data 0A31 2F
Mermory 0A32

The code 9C, appearing in the instruction register, causes CPU logic to implement two steps.
First, the contents of the memory word addressed by PC is fetched from memory. but is stored in
the high order byte of Data Counter (DC). The CPU then increments the contents ot PC:

Address of Memory
Memory Word Word
| A
0400 9C 0A00 | DC
0401 0A |} instruction 1 9C |
0402 . 30 ) 0402 pPC
0403 40 Instruction 2
Program 2 0404 9C
Memory 0405 0A Instruction 3
0406 31
0407 80 Instruction 4
0408 60 Instruction 5
L 0409
I 1
| |
0A30 7A
Data 0A31 2F
Memory 0A3%
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Next, the contents of the memory word addressed by PC is fetched from memory and stored in
the low order byte of DC. Again the CPU increments the contents of PC:

Address of Memory
Memory Word Word
A
(" 0400 9C . 0A30 DC
0401 0A Instruction 1 .{ 9oC |
0402 30 ‘ 0403 PC
0403 40 Instruction 2
Program J 0404‘ 9C
Memory 0406 0A Instruction 3
0406 31
0407 80 Instruction 4
0408 60 Instruction 5
\. 0409
l
1
1
0A30 7A
Data 0A31 2F
Memory 0A32

Execution of Instruction 1 is now complete. Observe that the contents of LITERAL, OR
memory words 0401,4 and 04024 have been loaded-into the DC register, IMMEDIATE
even though these two memory words are in program memory, and are DATA
addressed by the Program Counter (PC). The important concept here is
that the instruction code requires data to follow it.immediately. Non-instruction codes, required
by and appearing immediately after instruction codes in program memory, are called Literal, or
immediate data.

For example, in Instruction 1, memory words 0401, and 04024 contain the immediate data
0A30,¢. The instruction code 9C, fetched from memory word 0400, identifies the way in which
the immediate data 0A30,¢ must be interpreted by the CPU. o
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Let us now continue to Instruction 2. Upon completion of Instruction 1, the CPU fetches the con-
tents of the memory word addressed by PC, then increments PC. Having been given no-other
specific instructions, the contents of the fetched word are stored in the | register. to be in-
terpreted as an instruction code:

Address of Memory
Memory Word Word
) A
( 0400 9C 0A30 DC
0401 0A } Instruction 1 40 | .
0402 30 0404 PC .
0403 40 Instruction 2 ’
Program 4 0404 9C
Memory 0405 0A } Instruction 3
0406 31
0407 80 Instruction 4 \
0408 60 Instruction b
\_ 0409
| |
! !
0A30 7A
Data { 0A31 2F
Memory 0A32 -

This instruction code causes the CPU to fetch the contents of the memory word addressed by DC
and to load this memory word into the Accumulator (A):

Address of Memory
Memory Word Word
(— 0400 9C
0401 0A } Instruction 1
0402 30
0403 40 Instruction 2
Program 0404 9C
Memory < 0405 OA } Instruction 3
0408 21
0407 80 Instruction 4
0408 60 Instruction 5
\_ 0409
| 1
1 1
0A30 7A
Data { 0A31 2F \’1‘
Memory 0A32 . ,
;
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Notice that neither DC contents nor PC contents are incremented. PC contents are not incre-
mented because 7A is not immediate data; it was fetched from data memory. DC contents are
not incremented since there is no guarantee that data words will, in the normal course of events,
be referenced sequentially.

Instruction 2 has now completed execution, and PC addresses the next program memory word,
which contains the instruction code for Instruction 3.

Instruction 3 is a repeat of Instruction 1, except that the literal data 0A30,4 has been replaced by
0A31,6. As for Instruction 1, CPU registers undergo changes in three steps when Instruction 3 ex-
ecutes; step 1 fetches the instruction code to the | register:

Address of Memory
Memory Word Word
( 0400 9C
- 0401 0A } Instruction 1
0402 30
0403 40 Instruction 2
Program P 0404 9C
Memory 0405 0A } Instruction 3
0406 31
0407 80 Instruction 4
0408 60 Instruction 5
. 0409
0A30 7A
Data { 0A31 2F
Memory 0A32

Step 2 fetches OA from word 0405, and stores it in the high order byte of the DC register; by
chance, that is what the DC register contained, so no change appears in the DC register:

Address of Memory
Memory Word Word
7A A
( 0400 9C 0A30 DC
0401 0A } Instruction 1 9C |
0402 30 0406 PC
0403 40 Instruction 2
Program 0404 9C
Memory Y 0405 0A } Instruction 3 -
0406 31
0407 80 Instruction 4
0408 60 Instruction 5.
. 0409
0A30 7A
Data { 0A31 2F
Memory 0A32

4.8



Step 3 changes the low order byte of DC:

Address of
Memory Word

(" 0400
0401
0402
0403

Program _{ 0404

Memory 0405

0406

0407

0408

\_ 0409

0A30
Data { 0A31
Memory 0A32

Instruction 3 has now completed execution, and execution of Instruction 4 is ready to begin. As
with the previous instructions, the CPU automatically starts by loading the contents of the memo-

Memory
Word

9C

0A

30

40

9C

OA

31

80

60

7A

2F

ry word addressed by PC into |:

Address of
Memory Word

r 0400
0401
0402
0403
Program { 0404
Memory 0405
0406
0407
0408
L 0409

0A30
Data { 0A31

Memory % 5432

Memory
Word

9C

0A

30

40

9C

OA

31

80

60

7A

2F

} Instruction 1

Instruction 2
} Instruction 3

Instruction 4
Instruction 5

} Instruction 1

Instruction 2

} Instruction 3

instruction 4
instruction 5
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The instruction code 80 requires the CPU to fetch the contents of the data word addressed by DC
and to add this data word to the contents of the Accumulator (A):

Address of Memory
Memory Word Word
A9 A
(" 0400 9C ; 0A31 DC
0401 OA } Instruction 1 180 |
0402 30 0408 PC
0403 40 Instruction 2
Program d 0404 9C
Memory 0405 0A } Instruction 3
0406 31
0407 80 Instruction 4
0408 60 Instruction 5
. 0409
! :
0A30 7A
Data { 0A31 oF
Memory 0A32

Instruction 4 has now completed execution.

If the sum in A were being returned to any memory word other than 0A3 1, we would now
have to execute another variation of Instruction 1 to load a data memory address into DC. But the
Accumulator contents are to be stored in memory word 0A3 1,4 and that is the memory word
currently addressed by DC, so a “load data memory address™ instruction is unnecessary. We con-
tinue directly to Instruction b, which stores the contents of the Accumulator into data memory
word 0A31,¢ via these two steps:

Step 1. fetch the instruction code in the usual way:

Address of Memory
Memory Word Word
A9 A
(" 0400 9C 0A31 DC
0401 0A } Instruction 1 60 J
0402 30 0409 PC
0403 40 Instruction 2
Program 0404 9C
Memory 0405 0A } Instruction 3
0406 31
0407 80 Instruction 4
0408 60 Instruction 5
. 0409
:
0A30 7A
Data { 0A31 2F
Memory L a3z




!
Step 2, store the Accumulator contents into the memory word addressed by DC:

Address of Memory
Memory Word Word
A9 A
(" 0400 9C 0A31 DC
0401 0A } Instruction 1 ] 60 }
0402 30 0409 PC
0403 40 Instruction 2
Program 0404 9C
Memory 3 0405 0A } Instruction 3
0406 31.
0407 80 Instruction 4
0408 60 instruction 5
. 0409
1 |
i 1
0A30 7A
Data { 0A31 A9
Memory 0A32

Instruction 5 has completed execution, and the program is done.

THE ARITHMETIC AND LOGIC UNIT

Actual data manipulations within the CPU are handled by a group of discrete logic
components referred to collectively as the Arithmetic and Logic Unit (ALU). An ALU
must be capable of operating on binary data in memory word increments; ‘in other -
words, an 8-bit microcomputer’s ALU will operate on 8-binary digit data units. The
ALU must have logic to perform the following operations:

1) Binary addition

2) Boolean operations

3} Complement a data word

4) Shift a data word one bit to the right, or to the left.

Any more complex data manipulation operation required of a Central Processing Unit may be built
up from these few logic elements of the ALU.

THE CONTROL UNIT

It is the Control Unit {CU) that sequences the logic elements of the ALU in order to
implement any required operation. The Control Unit, in turn, is driven by the contents of the
Instruction register. In other words, the Instruction register contents are decoded by the Control
Unit. In response to the bit pattern of the instruction code, the Control Unit generates a sequence
of enable signals to flow data appropriately through the ALU and to enable ALU logic modules at
the proper time. The microcomputer CPU that results is illustrated in Figure 4-1.



The “Buffer register” holds data that are transiently in the CPU. For example, when two data
bytes are added (as in Instruction 4 of the binary addition example), the data word which is
fetched from memory, 1o be added to the Accumulator contents, will be stored in the Buffer
register.
ARITHMETIC AND
LOGIC UNIT

—— - ———— - ———— —

1 4—»[ STATUS FLAGS H—»f_
! |
l > ACCUMULATOR I
| <—->[ SHIFTER |<-|—>
1 : DATA COUNTER
t »
PROGRAM COUNTER

1> covpieventen j(-l—b' D
| ] " > INSTRUCTION REG |
] btz
| R

ADDITION ] <
1 ANDBOOLEAN | je&4—»q C
| LOGIC |

P S —— .
CONTROL UNIT

[ BUFFER REGISTER F—b =

Logic control paths are
represented by:

J—

Figure 4-1.  Functional Representation of a Control Unit

STATUS FLAGS

A CPU must have a set of single binary digit logic gates which are automatically set
or reset to reflect the results of ALU operations. Each binary digit logic gate is called
a status flag.

We have already encountered two status flags in Chapter 3: the | CARRY

Carry and Intermediate Carry. In order to perform multibyte } STATUS
arithmetic, any carry out of the high order bit of two data words must be
recorded in the Carry status, so that it may be propagated into higher order memory words:

High order tow order 1
- word word ‘
01011011 10111000
00101101 1101101 Carry status from
] high order bit of
low order word
10001001 10010010

High order bit position

The Carry status is also useful when performing multiword shift operations, as described in
Chapter 6.




'

In order to perform BCD arithmetic, it is also necessary to record any carry | INTERMEDIATE
out of the low order four bits of an 8-bit unit, since. as described in | CARRY STATUS

Chapter 2, each 4-bit unit of a byte encodes a separate decimal digit.

There are some additional statuses which may also prove useful when performing
various types of data manipuiation or decision making operations.

A Zero status flag may be set to 1, to indicate that a data manipulation operation
generated a zero result; this flag will be reset to O otherwise. A word of caution is required at
this point. Most microcomputers and minicomputers have a Zero status
flag. It is universally accepted that the Zero status flag will be setto 1ifa | ZERO
data manipulation operation generates a zero result, while the status flag | STATUS
15 set to O for a non-zero result. In other words,. the Zero status flag is
universally set to the complement of the result condition.

Another important point shawldibe made concerning the Zero status flag, | WHEN

and most other status flags™™Phose instructions which set or reset | STATUSES
status flags, and these which do not, are carefully selected by | ARE MODIFIED
microcomputer designers.

Consider the very obvious case of muitibyte addition, as illustrated above. The low order words of
two 2-word numbers are added. and the Carry status is set or reset to reflect any carry out of the
high order bit of the low order words. The carry must be added to the low order bits of the two
high order words of the two-word numbers. This mean$ that the Carry status must be preserved
while the two high order words are loaded into CPU registers. Clearly it would be disastrous to
program logic if. when a word of data was loaded from memory, the Carry status was cleared to
reflect the fact that the-load operation did not generate a carry.

At this point, it 1s only important to remember that every instruction will not affect every, or for
that matter any, status flags; moreover, the way in which status flags are set or reset is very im-
portant and is one of the most carefully thought out feature of any microcomputer CPU design. In
other words, status flags do not necessarily represent conditions within the CPU now; they may -
well represent the results of selected key operations the last time these operations were per-
formed.

Tie use of the high order bit of a memory word as a sign bit, when performing signed
binary operations, gives rise to twosstatus flags. First, there is the Sign status, which
is simply the contents of the sign bit (or its complement). The

Sign status flag allows tests to be made for positive or negative numbers | SIGN STATUS

when memory words are being interpreted as signed binary data.

The sign bit is always the highest order bit of any number. single word or multiword:

One multiword number

A
—\
highest .
order word lower order words
A A
{ f_ ——— e p—— N

sign bit

To the microcomputer, however, the high order bit of every byte will be treated as a sign bit.
Program logic must decide when to ignore the sign status and when to interpret it.
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Then there is the overflow status. Recall that the microcomputer | OVERFLOW
CPU is going to treat every binary addition alike — as a pure binary addi- | STATUS
tion. If a carry is generated when adding two lower order words of two
multiword numbers, then the carry is legal and simply reflects a carry into the next higher word of
the sum. This is illustrated for the addition of two 4-word numbers, with eight bits per word:

Magnitude of number

Sign bits A
¢ —
First number 00100011 01011011 11001011 10111100
Second number 00011101 10111001 11011000 11000111
Valid carries: 1‘ Vel 1‘

Sign:\}1000OO1 00010101 10100100 10000011

The microcomputer CPU has no way .of knowing whether a memory word is a single numeric en-
tity or part of a multiword numeric entity and, if part of a multiword numeric entity, whether it is in
the middle of the word or at one end of the word. This being the case, a carry generated as the
result of an addition is, so far as the microcomputer logic is concerned, always perfectly valid.
When the high order bit of a data word is being interpreted as a sign bit, any carry
out of the penultimate bit will represent an error overflow, that is, a resuit that will not fit
in the allocated space. Consider a single. 8-bit data word, being interpreted as signed binary data:

Sign bit
’ ‘;—-Highorderdatabit
5A 01011010 |
+D3 01101011
= -38? =11000101

A

A carry out of the high order data bit
represents a result too big to fit into the
allowed data space.

We must devise a strategy for identifying erroneous results of signed binary addition.

Does a carry out of the high order data bit always signal an error? Indeed no: consider
(=2) +(=2) =(-4).

. Sign bit
: High order data bit
| : , h
: (=2) 111111
+(=2) 111111
=(-4) U 1111

There is a carry out of the high order
data bit

O | =
el o]

Although there is a carry out of the high order data bit. the result is —4, which is correct. We will
use the symbol C; to represent a carry out of the sign bit and C, to represent a carry out of the
high order data bit. What if Cg and C,; are both 0?

0
0

[oNe]
oo o
(ol loNe]
(o} (o]
- 1O O

O |- —
[eNloNe)



11110100 (--0C)
+ 00001001 + 09

=11111101 . =(-03)
CS =0 (?p =0
So long as both C and C,, are zero. the answer is always correct.

Now consider some examples where Cs and C are both 1:

10001011 (—=75)
+01111001 + 79
00000100 ={+ 4)

1 1
C G

(Recall that 10001011 is —75;5 because 17535 is 01110101, the
twos complement of which is 10001011.)

11011000 (~28)
+01011001 + 59
00110001 =(+31)

1A/

c G,
11000111 (—39)
+11100110  +(=1A)
10101101 =(~53)

14}/1

i C. G

When Cgand Cg are both 1, the answer is always correct.

When Cgand C,, differ, that is, either one or the other, but never both are 1, the answer is always
in error: ’

01000101 45
01100111 + 67
10101100  =(-54)2?
OA}
C. G
10010010 (—6E)
10100100  +(-50)
00110110 =+36 2
1A/
C G




Our strategy for setting and resetting the Overflow status is therefore | OVERFLOW
clear. When carries out of the sign and penultimate bits are the same (C, | STATUS SET
.and Cg are both O or both 1), the Overflow status will be set to zero. When STRATEGY
these two carries differ. the Overfiow status will be set to 1, indicating that
the answer overflowed the answer space and is therefore wrong.

Stated another way, the Overflow will be the Exclusive OR of the carries out of the sign
and penultimate bits:

OVERFLOW = C; @ C,

The Parity status is the only. other status which is worth men- | PARITY
tioning at this time. This flag, if present, is set to 1 each time a | STATUS
data transfer operation detects a data byte with the wrong
parity. Clearly this status will be ignored most of the time, since it is only meaningful when the
-contents of a memory word is being interpreted as a character code.

INSTRUCTION EXECUTION

We have described how a microcomputer CPU may interpret the contents of a
memory word as an instruction code. But this leaves a number of unanswered ques-
tions. What maximum or minimum number of logical events constitutes an instruc-
tion? What occurs within the CPU during the course of an instruction’s execution?
And what external support logic does the CPU demand?

In answering these questions, we introduce a very critical microcomputer concept,
and one of the key differences between the minicomputer and the microcomputer.

In the world of minicomputers, the most important feature to look for in an instruc-
tion set is the versatility of operations performed by the CPU in response to each in-
struction code. This. is reasonable for minicomputers; minicomputers are frequently
called upon to perform varied and varying tasks, and programming may be an ongo-
ing, major expense.

In the world of microcomputers, this question is far more important: what does the
CPU demand of external logic?

Complex instructions usually demand complex. logic-external to the CPU. This is of
. no concern to the minicomputer user, who buys CPU plus all external logic, packaged
in a single box. This is of great concern to the microcomputer user, who must inter-
face his logic, often directly to the CPU. If a microcomputer costs somewhere be-
tween $56 and $100, the-entire economics of using the microcomputer will evaporate
unless the interface logic demanded by the microcomputer CPU is also inexpensive.

Let us therefore examine how an instruction is executed, and then return, at the end
of this chapter, to the differences between-minicomputer and microcomputer.

INSTRUCTION TIMING

As with all digital logic, operations within a microcomputer CPU are controlled by a
crystal clock, with a period which may vary from as little as 100 nanoseconds to as
much as a microsecond. We will refer to this clock signal using the symbol ¢ :

Clock Signat (() _‘! l—
p—

Period
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While the crystal must be external to the CPU chip, the logic which generates the clock signal
may or may not be on the same chip as the CPU. Moreover, depending on how the CPU has
been designed, the timing signal may be a straightforward single signal, as illustrated above, or it
may consist of a more complex interaction of signals. Here is one possible combination of two
signals, identified by the symbols ¢, and ¢,

JL 1T

e ———

e Period —3»
The simple signal provides two edges and two states per period:

Edge 1 Edge 2

-
" -J
~State 2 H } State 1

0 =1 F—Perwod-" o =0

The more complex signals provide four edges and three states per period:

Edge 1 Edge 2 Edge 4

o  Fae® gﬂ

I
tt— Period —»4

0,

State1: 0, =0 ¢, =0
State 2: @1 = O [Dz
State3: 0, =1 ¢, =0

In this chapter we will use the simple signal 0.

INSTRUCTION CYCLES

The execution of every instruction, by any microcomputer, may be divided into
two parts: the instruction fetch and the instruction execute. This was illustrated
earlier in this chapter-for the six-step binary addition example. Recall that every instruction starts
with the instruction code being loaded into the Instruction register. We will refer to this operation
as an instruction fetch. )

During the instruction fetch, CPU logic outputs the contents of the | INSTRUCTION
Program Counter register, along with appropriate control signals | FETCH
specifying that external logic is to return the contents of the memory word
addressed by the Program Counter. So far as external logic is concerned, this is simply a read
operation. '

:




The contents of the memory word, when received by the CPU, is stored in the Instruction
register, and thus gets interpreted as an instruction code.

While externat logic is responding to the instruction fetch, the CPU uses its own internal logic to
add 1 to the contents of the Program Counter. The Program Counter now points to the memory
word following the one from which the current instruction code was fetched.

Once the instruction code is in the Instruction register, it triggers a se- | INSTRUCTION
quence of events controlled by the Control Unit; this sequence of events | EXECUTE
constitutes the instruction execution. ’

Two clock periods will be used to execute an instruction; one will time the instruc-
. tion fetch, the next will time the instruction execute:

o }

1 . .
tinstruction Instructlon:

: Fetch Execute :

One Instruction Cycle

Next consider the signals via which the CPU will communi- | CPU PINS

cate with external logic. The 40-pin DIP, being the most popular | AND SIGNALS
among today’s microcomputers, is the one we will adopt — which
means that 40 signals may be input and/or output, including the clock, power and ground.

The way in which the 40 pins of the DIP are used constitutes one of the most varia-
ble features of microcomputers, but they all begin along these lines:

Vdd
Power and ground {Vss
Vag

—p-clock 0

Hlwfro]—




Vdd is the current drain connection, or power input.
Vss is the current source, or ground.

Vgg is the gate voltage; it is not required in all LS| devices.

Many devices will show power connections much more simply. in one of | POWER
the following ways: SUPPLIES

+ by —
+ 12v—
Gnd —»

In this case the device requires two power supplies, + 5vand + 12v, plus

a single ground. Frequently a single power supply will suffice:

+ By =P
Gnd ——3=

The first step, when executing any instruction, is the instruction fetch; that | INSTRUCTION
is. in reality, a memory read. It requires a memory address to be output, | FETCH SIGNALS
and a data word to be input in response. AND TIMING

If the memory address can range from 0 to 65,535, sixteen address pins will be re-
quired, one for each binary digit of the address:

Vdad| 1

Power and ground { Vss 2
Vgg} 3

— paclock @ 4

-— Address < A8

A10
Al
A12
A13
Al4
A15




Ali data will enter and leave the microcomputer CPU via eight bi-directional signals.
A READ control signal, indicating that data must be input to the CPU, completes the
requirements for the instruction fetch:

vad[ 1 o0 ] )
Power and ground { Vss 2 D1
Vggl 3 D2
—pclock 0 | 4 D3 Data q—gm
([ 20 D4 T
Al D5
A2 D6
A3 D7 J
Ad READ g
A5
AB
A7
«¢— Address < | A8
A9
A10
A1l
A12
A13
Al4
L A15

The following timing diagram defines the instruction fetch sequence, as controlled
by the CPU:

l
ADDRESS

—><

AO to A15 1 [
i |
|
I
READ
I ! I
! I
|
I ' \
TA
! >(STQBLE ><
DO to D7 ; |
! Instruction !
Fetch




We will now turn our attention to the requirements for instruction execution.

Consider the six-step binary addition program which was described at the end of
Chapter 3. There are four separate and distinct types of instructions within the pro-
gram. They are:

1) Load a memory address into the Data Counter (Instructions 1 and 3).

2) Fetch the contents of the data word addressed by the Data Counter and store it
in the Aceumulator (Instruction 2).

3) Fetch the contents of the-data word-wddressed by the Data Counter, add it to the
contents of the Accumulator, and store the result in the Accumulator (instruc-
tion 4).

4) Store the contents of the Accumulator in the memory word addressed by the
Data Counter (Instruction.5).

Let us examine how each of these four instruction types are executed, in terms of in-
struction cycles and control signals output tsand input to the CPU.

Instruction 2 is the simplest, so we will begin wittrit. MEMORY READ
) . . . SIGNALS AND
ki i |
Like all instructions. it begins with an instruction fetch TIMING

The Control Unit decodes the instruction code 40+g, and in response causes a data word to be
fetched from memory. In reality. sincesthe data is in a memory word on a memory device, all the
CPU can really do is generate signals at its pinsilagic external to the CPU must respond o these
signals if the data fetch.is to be accomplished.

As seen by external- logic. signals generated by the CPU to fetch data are identical to signals
generated for the instruction fetch.

Thus timing for a Memory Read instruction is as follows::

* |
I
{ | |
INSTRUCTION DATA
AQ to A15 x| ADDRESS |X ADDRESS x
| |
|
|
1
READ
i ]
| | '
| I
"DO to D7 | x ST K x DATA IF
+ )
I I !
| instruction | Data :
: Fetch | Fetch \
I ]
|
| Memory Read
Instruction



These are the only differences between the instruction fetch and the data fetch cycles:

1) During the instruction fetch cycle, the address output on AQ - A15 is the contents of the PC
register; during the data fetch cycle, it is the contents of the Data Counter.

2) During the instruction fetch, data input is stored in the Instruction register; during the data

fetch, it is stored in the Accumulator.

This simple scheme demands very little of the external logic. If READ is

~high when § is high, then memory circuits must decode AO - A15. The
selected memory module must extract the contents of the addressed
memory word and make sure it is at the microcomputer data pins when ()
is low.

EXTERNAL
LOGIC
REQUIREMENTS

What the microcomputer CPU demands of external logic during a read operation is standard, sim-
ple logic that is part of any memory device; but we will defer this discussion to Chapter b, and

continue with CPU signals and timing for the ADD instruction.

In order to perform an add, the CPU fetches the contents of a memory
word, exactly as it did for a Memory Read instruction; however, for the
Add instruction, the fetched data are added to the contents of the Ac-
cumulator: by contrast, data fetched during a Memory Read instruction
are deposited in the Accumulator unchanged.

ADD
OPERATION
SIGNALS AND
TIMING

As seen by external logic, therefore, there is no difference between the signals

generated for an Add or a Memory Read instruction.

Instruction 4 causes the contents of the Accumulator to be stored in the
memory word addressed by the Data Counter; this is called a Memory
Write instruction. As seen by external logic, the only difference
between the signal sequences for a Memory Read and a Memory

MEMORY WRITE
SIGNALS AND
TIMING

Write is that a WRITE signal must go high, instead of a READ signal, when { is high.

We must therefore add a WRITE signal to our CPU device:

Vdd 1 DO
Power and ground { Vss 2 D1
Vggl 3 D2
— 3 clock @ 4 D3
A0 D4
Al 05
A2 D6
A3 D7
Ad R
AS W
AB
A7
-— Address < A8
AQ
A10
A1l
A12
A13
Al4
L[ A5

> Data g 5

READ —po
WRITE ___ g



Timing for a Memory Write instruction is as follows:

| |
INSTRUCTION DATA %
AO to A1b | ADDRESS X ADDRESS

|
1
1
|
|
READ 4
|
I ]
| i
] 1
WRITE ] 1
i |
I ! |
| 1
| o DATA
DO to D7 4
1 1
| Instruction Data |
i Fetch : Store |
I ! !
Memory Write !
Instruction

Instruction 1 loads a memory address into the Data Counter. | LOAD DATA
This instruction occupies three memory words, one for the in- COUNTER
struction code and two more for the memory address. SIGNALS AND
TIMING

Notice that the Load Data Counter instruction is equivalent to two memo-
“ry reads, with these differences:

1) Both Load Data Counter memory reads are specified by one 9C,4 instruction code. By con-
trast, the 40, Memory Read instruction code triggers just one memory read.

2)  The Load Data Counter instruction fetches data from memory words whose addresses come
from the Program Counter. For a Memory Read instruction, the: Data Counter provides the
data memory address.

3) Data read from memory by the Load Data Counter instruction is stored. in the upper and
lower halves of the Data Counter. For a Memory Read instruction. the fetched data is stored |
in the Accumulator. |
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The differences between the Load Data Counter and the Memory Read instructions
may be contrasted as follows:

A %
oc 4 DC
ALU | PC ALU ?ljépc
ICONTROL UNIT ' / | CONTROL UNITI
| NG| D007 A0 ATS 5007

MEMORY READ LOAD DATA COUNTER

While the logic operations internal to the CPU are completely different for the Load
Data Counter and the Memory Read instructions, the external timing and signal se-
quences are remarkably similar. A very smart microcomputer CPU could execute the
Load Data Counter instruction in three time -periods, as follows:

N __r
! |
I | |
|
INSTRUCTION x
ADDRESS +2 )
|
|
|
|
|

! J
INSTRUCTION INSTRUCTION
AD to A15 —X ADDRESS X ADDRESS +1
|

Three time period Load
Data Counter instruction

READ m—mer—] S |
] 1 |
I | | |
! 1 | ]
INST: x . x
X COSDE DATA DATA
DO to D7 : : | | ‘
|  Instmotion i First half I second halt
| Fetctr- 1 of Address | of Address
: : Fetch I Fetch
[
| I )
|
|
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Some microcomputers do not try to be so clever. In order to simplify CPU logic, the Program
Counter contents are only output, as an address. during the first clock period of an instruction.
The Data Counter contents, likewise, are only output during the second clock period of an in-
struction. This simpler CPU will require six clock periods to execute the Load Data Counter in-

struction:
]
! ! ! !
INSTRUCTION * INSTRUCTION x x INSTRUCTION x
AD to A15 ADDRESS /) ADDRESS+1 ADDRESS + 2

L]

=4
MR
M
M—

READ

_._j A

h

INST.

]

0O to D7 e : DATA DATA
Instruction } _ I First half | Second half |
Fetch I : of Address | of Address
| | Fetch | | Fetch
| |

l. l
Six time period Load
Data Counter instruction

HOW MUCH SHOULD AN INSTRUCTION DO?

Let us now consider ways in which the instructions described in this chapter may be
made simpler or more complex.

The Load Data Counter instruction loads the two 8-bit words which follow the in-
struction code into the Data Counter. This instruction could be broken up into two in-
structions, one to load the low order byte of the Data Counter, the other to load the
high order byte of the Data Counter. Let us compare the two forms of the Load Data
Counter instruction:

9¢ Load 0A304¢ into 90 Load 0A,g into Data Counter
0A the Data Counter 0A Hnghrorder byte
30 9 Load 30, into Data Counter
30 Low order byte
One three-byte Load Two two-byte Load Data
Data Counter instruction Counter Instructions
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The three-byte Load Data Counter instruction’s possible signals and timing have been illustrated.
The two 2-byte instructions could each execute in two time periods or in four time periods. Ex-
ecuting in two time periods, signals and timing for each instruction would be as follows:

L

o

|

U : |
x INSTRUCTION x INSTRUCTION
AQ to A15 ADDRESS ADDRESS +1 1

INSTRUCTION
ADDRESS +1

INSTRUCTION
ADDRESS
|

|

READ

DO to D7

|

l

* INST x
CODE

N

L

L LJ

DATA

ol

First
Instruction
Fetch

S I

| Fisthalf | Second
| of Address | Instruction
| Fetch ; Fetch

|

|
INST
|

Second half |
of Address |
Fetch :

1

Timing and signals, when executing in four time periods, would be as follows:

]

L

—

0 |
i . |
A0 to ',&NSTRUCT}ON I
A15 x ADDRESS x

INSTRUCTION! /INSTRUCTION
ADDRESS +1 ADDRE

5
[
1%}

INSTRUCTION
ADDRESS+1

j_J

R

I

|

.
READ }
|

]

DO i ' | | |
R ! |
T | i | | | | !
First First half Second Second half
Instruction of Address Instruction of Address
Fetch Fetch Fetch Fetch

Breaking the three-byte Load Data Counter instruction into two 2-byte instructions does not
simplify the demands placed on external logic by the CPU; but it does make the microcomputer's
Control Unit simpler, as we will demonstrate later in this chapter when describing microprogram-

ming.




Now consider combining the Load Data Counter and Memory Read instructions as
follows:

41 Load into the Accumulator the contents of the memory
0A word addressed by the next two words of this three-word
30 instruction.

As illustrated above, 41,4 is the instruction code specifying this three-byte Memory Read instruc-
tion; 0A30,¢ is the address of the memory word whose contents is to be read into the Accumula-
tor. Instructions that specify the memory address to be referenced. as this
three-byte Memory Read instruction does, are said to have direct memory | DIRECT

addressing. . ADDRESSING

Signals and timing for the three-byte Memory Read instructions could take one of many forms.
Here is the most compact possibility:

|
| |
INSTRUCTION INSTRUCTION INSTRUCTION DATA
ADDRESS ADDRESS +1 ADDRESS +2 ADDRESS
|

|
, DATA
INST
| CODE ADDR
DO to D7 LO

| Instruction : Fetch High { Fetch Low = Fetch Data
| Fetch | Order half of | Order half of i

I i Data Address lData Addressl

| Three-byte Memory Read Instruction
Execution

To a minicomputer designer, combining the Load Data Counter instruction with the .
Memory Read — or with any memory reference instruction — is obvious.

To the microcomputer designer, the automatic virtues of direct addressing are not so
obvious, for the immediately apparent reason that direct addressing instructions re-
quire more complex Control Unit logic; this will be illustrated later in this chapter
when microprogramming is described. ’

But there is less immediately apparent reason why direct addressing is not obviously
desirable; whereas most minicomputer programs are stored and executed out of
RAM, most microcomputer programs are stored and executed out of ROM; that
means direct addressing can only be used when the data address will not change.
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Consider an elementary instruction sequence which receives REFERENCING
data input from an external device, then stores the data into a DATA TABLES
number of consecutive memory words:

0A10
0A11
0A12
0A13 ACCUMULATOR

0A14 : ‘ From External
0A15 et Device

0A16
0A17
0A18
0A19

RAM data memory words in the above illustration constitute a “data table.” The beginning ad-
dress, 0A10,4. has been arbitrarily selected:; any other address would do as well.

Ignoring, for the moment, the question of how many data words are to be stored in the data ta-
ble, the following instruction sequence would fill the data table:

Avrbitrarily
selected Program
addresses Memory
0280 9C
0281 0A Load the address 0A 104 into the Data Counter
0282 10
0283 08 Input a byte from an external device to Accumulator
0284 60 Store Accumulator contents in memory
0285 E3 Increment Déta Counter
8;:: 2§ Reset Program Counter to 0283

A straightforward Load Data Counter instruction, stored in program memory
words 0280,,, 0281,, and 0282,,, loads the address 0A10,, into the Data
Counter; this is the address of the first word in the data table.

The instruction code 08¢, in program memory word 0283,,, causes a byte of data to be input to
the Accumulator from an external device.

The instruction code 60,,, in program memory word 0284,,, is a simple Store
Memory instruction; it causes the contents of the Accumulator to be stored in the data
memory word addressed by the Data Counter; initially that is the first word of the data table, with
address 0A10,4. ‘

The next two instructions, located in program memory words | PROGRAM
0285,,, 0286,, and 0287,,, increment the Data Counter con- | LOOP
tents (to address the next word of the data table), then change the
value in the Program Counter to 0283, ,; execution now returns 1o the instruction which
brings the next data word into the Accumulator from the external device. We have established a
program loop — a group of instructions that continuously get re-executed: a slightly different
task is performed on each re-execution, because the Data Counter contents is incremented on
each pass.
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Four instructions, occupying five memory bytes, can fill a data table, whatever the

- length of the data table may be!

Using direct addressing. this pregram loop couid not be executed. We would have:

Program
Memory
0280 08 } Input a byte from an external device to Accumulator
0281 61
0282 oA ‘Store Accumulator contents in data memory word
—addressed by the second and third instruction bytes
0283 10
0284 } Increment what?
0285
0286

The data table is addressed by the second and third bytes of the memory-store-
with-direct-addressing instruction. This address cannot be incremented if it is
going to reside in ROM! Minicomputers have a solution to this problem, of course (we shall
see what the solution is in Chapter.6). but the solution adds complexity to microcomputers and

the complexity may bring with it more cost than savings.

Two of the new instructions in the program loop need to be described-further at this

point.

The Increment Data Counter instruction simply causes the contents
of the Data Counter to be increased by 1; following the instruction fetch,
logic external to the CPU is idle:

CPU
OPERATE
INSTRUCTIONS

0

| |

i |

A0 to A15 ﬁTRUCTION X
1 |

; |

|

|

|

|

— e e e —

Operate Instruction

READ
|
| N
=)

DO to D7 COOE .
| |
| Instruction | CPU |
I Fetch | operations |
I | i
I P '
| |
i |

|
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The instruction in program memory words 0286, and 0287, BRANCH
actually changes the contents of the Program Counter, and INSTRUCTION
thus changes the sequence in which instructions are ex- | JUMP

ecuted. This is referred to as a Branch or Jump instruction. INSTRUCTION

Branch instructions have many variations. A two-word version is illustrated in the
program loop; the contents of the second instruction word is loaded into the low
order half of the Program Counter as follows:

ABSOLUTE
BRANCH

0285 E3 ‘ 0287 PC

0286 BC ) BC |

0287 83

0285 E3 0283 PC

0286 BC BC i

0287 83

The problem with this variation of the Branch instruction is | BRANCHING
that it will not work if the Program Counter high order byte | AT
gets incremented. For example, suppose the program loop was stored | PAGE

in memory as follows: BOUNDARY

Program
Memory

02FC 9C

02FD 0A Load Data Counter

02FE 10

02FF 08 Input from External Device

0300 60 Memory Write

0301 E3 Increment Data Counter

0302 BC

0303 FF ; Branch to FF

Branch to FFg would branch to 03FF 1. not to 02FF 1, because the high order byte of the Pro-
gram Counter got incremented between the input and memory write instructions.

There are two ways around this problem.

First, we can have a three-word Branch instruction which changes both halves of the
Program Counter.

Second, we can add the contents of the second Branch in- | PROGRAM
struction word to the Program Counter, designing the CPU so that | RELATIVE
it interprets the second Branch instruction word as a signed binary num- | BRANCH
ber. Referring to the program loop, after the Branch instruction had ex-

ecuted, the Program Counter would normally contain 0288,4; to change this value to 0283,
5 must be subtracted. The twos complement of 5 is:

11111011



or FByg. This is the value that would be stored in program memory word 0287,¢. Adding an 8-
bit value from memory to the 16-bit contents of the Program Counter using signed
binary arithmetic is not a problem; CPU logic simply propagates
the sign bit through the high order half of the value to be added | SIGN

to the Program Counter. In this case we have: PROPAGATION

0 2 8 8

Program Counter (old)
Value added

g :
Program Counter (new) : 0
’ 2 \ 3
Sign bit

Sign bit propagation

Adding 5 to the Program Counter contents would proceed as follows:

Program Counter (old) - 00009 10

( 10001

Value added : BASS P0:00000
Program Counter{new) - [ 00000 0 1 ow1
Sign bit propagation Sign bit

This is referred to as a Program Relative branch.

MICROPROGRAMMING
AND THE CONTROL UNIT

Let us now examine how the Control Unit decodes instruction codes.

A microcomputer CPU may be illustrated functionalily, as in Figure 4-1, but in
reality, the CPU consists of a number of logic elements, activated by sequences of
enable signals.

The Complementer. for example, is latently able, at any time, to complement the contents of
eight data latches within the logic of the complementer circuits. A single enable signal, emanat-
ing from the Control Unit, will activate this logic sequence.

However, complementing eight data latches within the Complementer serves no useful purpose.
We want to complement the contents of the Accumulator, and that means moving the contents
of the Accumulator to the Complementer, then, after enabling complementer logic. returning the
results to the Accumulator.
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Complementing the contents of the Accumulator therefore requires these five steps:

1)

ARITHMETIC AND

Move the contents of the Accumulator to the Data Bus:

F———————————

LOGIC UNIT ———
'--———-———————-——' /” ~
- ~
-
-<~>’ STATUS FLAGS H—b [ | - N
i =" ACCUMULATOR \
- > 10110101 j \
-(-bL SHIFTER \
DATA COUNTER |
! - PROGRAM COUNTER |
<->L COMPLEMENTER ]1’—»
] - INSTRUCTION REG | !
I |2 /
ADDITIO! | S /
N =
<> AND BOOLEAN ] ©
LOGIC | 1)
W,
- == —=- CONTROL UNIT
I BUFFER REGISTER ]1—5‘ ._1
DATA BUS
2) Move the contents of the Data Bus to the Complementer:
ARITHMETIC AND
LOGIC UNIT
————— ey
| (-b[ STATUS FLAGS HF_'T
11 < > 10110101 ~Jaccumuiator
: "PL SHIFTER
| : -« > DATA COUNTER
| COMPLEMENTER | o
- PROGRAM COUNTER
| <§L 10110101 H?
| I =T L INSTRUCTION REG l
o
l ADDITION ' Z
o
' - AND BOOLEAN J—-) A AN
| LOGIC | \ _@
L g —
L BUFFER REGISTER lr(—b ||
DATA BUS

4-32



3) Activate Complementer logic:

ARITHMETIC AND

LOGIC UNIT )
po——m——————
| <-h[ STATUS FLAGS H—h
| I 10110101 ACCUMULATOR
| 4{ SHIFTER H—> i J
I ] > » DATA COUNTER
| COMPLEMENTER » PROGRAM COUNTER
| I 0001019 ‘ INSTRUCTIONREG. |
- =
| <+ |2
Nz
ADDITION =
l -t AND BOOLEAN 2
LOGIC \@
l_ ———— —_—— —J CONTROL UNIT
\
l BUFFER REGISTER |'1—> L
DATABUS
4) Move the contents of the Complementer to the Data Bus:
ARITHMETIC AND
LOGIC UNIT
| -4-" STATUS FLAGS ]
i | -
10110101 ACCUMULATOR
| [ SHIFTER jv(r-b‘
| DATA COUNTER
COMPLEMENTER |
| PROGRAM COUNTER
i 01001010 >
| A » INSTRUCTION REG |
! I 1E]
| ADDITION | g~ N
l>] AND BOOLEAN <> ° N
| LOGIC \@
L —— CONTROL UNIT
\
| BUFFER REGISTER > [
DATABUS
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5) Move the contents of the Data Bus to the Accumulator:

ARITHMETIC AND
LOGIC UNIT

T T ===

| ¢
A

t STATUS FLAGS }b T T T T~
\\

S
l ACCUMULATOR

< - 01001010
"Pi‘ SHIFTER | |

Bl DATA COUNTER \

COMPLEMENTER
< PROGRAM COUNTER
ﬂ 01001010 ‘H—b o
- INSTRUCTIONREG |

——— s — . e ey

E

38

ADDITION | IS

L] AND BOOLEAN >
I LOGIC ‘I
L= ———_ CONTROL UNIT
/
| eurrermecisTen 1‘—"'_4
DATABUS

Each of these five steps is referred to as a microinstruction.
Each microinstruction is enabled by a signal from the Control
Unit. By outputting the appropriate sequence of control signals, the
Controi Unit can sequence any number of microinstructions,
to create a macroinstruction, which is the accepted response of
the CPU to an assembly language instruction code.

In order to complement the Accumulator contents, the Control Unit must
contain five binary codes, each of which triggers an appropriate control
signal (or signals). This sequence of binary codes within the Control Unit is

MICRO-
INSTRUCTIONS

MACRO-
INSTRUCTIONS

MICRO-
PROGRAMS

referred to as a microprogram. Generating the sequence of binary codes that are stored within

the Control Unit is referred to as microprogramming.

There is a close parallel between microprogramming and assembly language pro-

gramming.
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A microprogram s stored as a sequence of binary digits in the Control Unit. An assembly
language program is stored as a sequence of binary digits, usually in a ROM memory. The assem-
bly language program is referred to as a macroprogram. Each instruction code of the
macroprogram initiates execution of an entire microprogram, as stored in the Control Unit:

[ ‘ EXTERNAL DATA BUS ]
A A A
\ A
ROM
— A DATA
o]
ALU o
s
g ! RAM
=) DATA
St CUDATA 4
Of
CPU ROM ’ RAM

each macro-instruction
code causes one entire
microprogram to

be executed -

A microprogram stored in the Control Unit has a data memory, which consists of the CPU
registers, plus a data storage internal to the Control Unit. A macroprogram has a data area, which
consists of ROM memory for constant data, plus RAM memory for variable data:

I EXTERNAL DATA BUS

ALU

DATA BUS

CY

MACROPROGRAM

N

CPU Microprogram Macroprogram
data area data area

<

RAM

Individual instructions of a microprogram implement a small logic sequence within the logic of the
CPU. Individual instructions of a macroprogram cause an entire microprogram to be executed,
thus implementing a whole sequence of operations within the CPU.
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The complexity of operations associated with any |MACRO-

macroinstruction is a direct function of the size of the |INSTRUCTION
microprogram whose execution the macroinstruction initi- |COMPLEXITY
ates. There are no logical breakpoints or levels at which a
microprogrammer must terminate the microprogram which will be executed in response to any
magcronstruction code. Of course, complex microprograms require large Control Units. A simple
microcomputer may have a small Control Unit and therefore may be forced to execute very sim-
ple macroinstructions. Some large computers have no assembly language, but in response to a
single macroinstruction code. execute complex sequences of events involving logic throughout
the computer system

The Control Unit of every microcomputer is in reality |MICRO-
nothing but a microprogram. if you, the user, are able to | PROGRAMMABLE
create or modify the microprogram within the Control Unit, MICROCOMPUTER

then the microcomputer is said to be ‘‘microprogramma-
ble’’. If the Control Unit microprogram is designed by the microcomputer logic
designer, and then becomes an unalterable part of the CPU chip, the microcom-
puter is not microprogrammable.

In this book we are going to describe these two separate and distinct classes of
microcomputer product:

1) The microprocessor based microcomputer which gives you access to a Central
Processing Unit, but not to the Control Unit. You sequence CPU logic using
macroinstructions, referred to collectively as an Assembly Language instruction set. You can-
not microprogram this class of microcomputer product; nonetheless, a basic understanding
of microprogramming will help you understand the tradeoffs that every microcomputer
designer must evaluate when putting together an instruction set

2) The ‘’microprocessor slice’’ or ‘‘macrologic’’ based MACROLOGIC
microcomputer. Here you are presented with CPU “building | MICRO-
blocks”, which you must tie together with a microprogram PROCESSOR

SLICE

MICROPROCESSOR BASED MICROCOMPUTERS

First we will describe microprocessor based microcomputers.
Let us identify an arbitrary set of control signals, as illustrated in Figure 4-2. Our

microcomputer Control Unit will generate these control signals to implement
macroinstructions. Tables 4-1, 4-2 and 4-3 describe these control signals.

When compared to the ingenuity of real chip slice microinstruction codes, Tables 4-1, 4-2 and
4-3 represent a somewhat simplistic and inflexible CPU logic organization. Nevertheless, they will
make real chip slice architecture easier to understand by clarifying the goals that the chip slice
logic designer must attain.

The control signals described in Tables 4-1, 4-2 and 4-3 do not allow the Control
Unit to perform all of the operations which will be needed to support assembly
language instructions. For example, nothing has been said about how the READ and WRITE
control signals will be generated. or how the four status latches C (Carry). O (Overflow), S (Sign)
and Z (Zero) will be handled. One primitive scheme for handling these problems is to trap
microinstructions that attempt to set both CO and C1 to 1: this is an impossible condition, since it
specifies data moving on and off busses simultaneously. If CO and C1 are both 1, they will
be output as 0, and the remaining signals, C2 through C8, will be interpreted as
specifying the following five different classes of internal Control Unit operations:

1) If C2 through C8 are all 0, then the status latches Z. S, O and C. in the ALU. will.have their
condition recorded in the CU DATA buffer. ’



M 20
1
A2
| A3
| A4
@ ] A5
STATUS : 2 4s
M CEREEK am
» DATA COUNTER A1 _|ns
= [ PROGRAM COUNTER 5 A9
Cem1s g 2 a0
g AR = ]~
C; =P é A12
2 —
z yof ALULATCHES A
Cs ™o ARITHMETIC L J A
g AND A15
p{ BOOLEAN L 7
L_ » LOGIC
Ly - p—
CF& BUFFER REG
e
ol 15 -T—b Accumulator
o< I - Bata Counter (HI)
oal 1% | —»- Data Counter (LO)
ool 1% L—» Program Counter (HI)
w12 el e « ——Rrogram Counter (LO)
o[ ] ! & L Instruction
wrTe| e -———— 8 | Status
reao] e CUDATA___ ] Ca | & |—=Shifter
o > Cs_ | £ - Compl
C—-»--—-**** . > 2 | ALU
O e 11 >  |>Butfer
S -t = 11 > 3 Data Register
7 B - ——— — J |—»» Data Counter to ADDR
— Program Counter to ADDR
Ce)Cr Csl | Data to Buffer
Figure 4-2.  Control Unit Signals For a Simple Microcomputer
Table 4-1.  Control Unit Signals
SIGNAL FUNCTION
co.c1 C0=0, C1=0:; No data moved onto, or off Data Bus or Address Register
CO=1, C1=0; Data moved onto-Data Bus. or Address Register
CO=0. C1=1; Data moved off Data Bus, or Address Register
CO=1. C1=1; Microinstruction will be trapped within the Control Unit (see
; Table 4-4).
| C2.C3, When C0=1C1=0, or CO=0 C1=1, these four signals are decoded to select
C4,C5 specific data flow, as specified in Table 4-2.
C6.C7.C8 | These three signals are decoded to select ALU operations as specified in Table
4-3.
WRITE, Direct connections from the input pins to two CU data bits.
READ
0 Clock signal input to CU
C.0Sz Four status bits, directly connected to four CU.data bits."
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Table 4-2  Data Flow Select When CO=10OrC1=1"

Csg C4 C3 C, FUNCTION
0 0 0 0 Accumulator == Data Bus select
1 0 0 0 Data Counter high order byte « Data Bus select
0 1 0 0 Data Counter low order byte = Data bus select
1 1 0 0 Program Counter high order byte “— Data Bus select
0 0 1 0 Pragram Counter low order byte “— Data Bus select
1 0 1 0 Instruction Register «— Data Bus select
0 1 1 0 Status Register «— Data Bus select
1 1 1 0 Shifter ~= Data Bus select
0 0 0 1 Complementer «— Data Bus select
1 0 0 1 ALU latches +— Data Bus select
0 1 0 1 ALU Buffer «— Data Bus select
1 1 0 1 Data Register +— Data Bus select
0 0 1 1 Data Counter «— Address Register select
1 0 1 1 Program Counter «— Address Register select
0 1 1 1 Data Register — Buffer Register ’
1 1 1 1 Not Used

Table 4-3.  ALU Select Signals

(]
@
(2]
~
¢
-

FUNCTION

Select shifter logic

Select complementer logic
Select addition logic*
Select AND logic*

Select OR logic*

Select XOR logic*
Increment ALU latches

No ALU operation

- 0O = O - O = O
- 0 a2 00 00

- OO0 5 a0 0

*Operation is performed on contents of ALU latches and Buffer register.
Result appears in ALU latches.




2) 1f C2 and C3 are 1and 0, then C5, C6, C7 and C8 will be interpreted as corresponding to the
Z. S. O and C statuses, respectively. If C4 is O, the status conditions in the ALU are’
referenced; if C4 is 1, the status conditions stored irr the DATA buffer are referenced. C5. C6,
C7 and C8 wilt each be checked for a 1 value. If a 1is found, then the corresponding status
will be checked. If the corresponding status has a value of 1. then the next microinstruction
will be skipped. This use of the nine controls Cq through Cg may be illustrated as follows:

Cg C7 Cg C5 Cy C3 Cy Cy Co
LL LT T Jofrfrfr]

Skip next microinstruction on status = 1

= ALU status settings specified
CU DATA buffer status settings specified

Status selected, and should be tested
for setting of 1
Do not test this status

(]
I

0
1

z
S
(0]
C

3) If C2 and C3 are 0 and 1, then the logic of condition 2 described above will be repeated:;
however, corresponding status flags wilt be checked for O values as the condition which
forces the next microinstruction to be skipped.

4) 1f C2, C3and C4 are 1, 1 and O, respectively, then C5. C6. C7 and C8 specify the status of
four control signals which the Control Unit may output at chip pins. We have only described
two control signals thus far: READ and WRITE. We will assume that C8 specifies the condi-
tion of READ and C7 specifies the condition of WRITE. This use of the nine controls Cg
through Cg may be illustrated as follows:

Cg C; C5C5 Cy C3C, Cy Cp
L1 1] Jofififr]r]
\-’j:Output control signals

Not currently specified

Not currently specified

WRITE assumes value of this bit
READ assumes value of this bit

5) When C2, C3 and C4 are all 1, then C5 through €8 will be decoded internally to specify one
of 16 logical operations internal to the Control Unit. We will not attempt to define what these
operations might be.

We will now create some microprograms. Let us begin simply, by creating an
instruction fetch microprogram. Recall that every instruction’s execution starts with an
instruction fetch; therefore, the instruction fetch microprogram must precede every microprogram

which implements an instruction’s execution. The instruction fetch microprogram is shown in
Table 4-4.

Before analyzing the instruction fetch microprogram. microinstruction-by-microinstruction, a few
general comments must be made.

Each microinstruction becomes nine binary digits within the | MICRO-
Control Unit. The 8-bit (or byte) unit was selected as the word | INSTRUCTION
size for the microcomputer because this word size is useful | BIT LENGTH
when representing characters and numeric data, in addition to
representing instruction codes. The Control Unit microprogram does not represent
numeric data or instruction codes: therefore, the microinstruction bit length is ar-
bitrarily set to whatever the microcomputer needs — in this case nine bits. Since there
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Table 4-4. An Instruction Fetch Microprogram

MICROIN T
In;t;:c- C(S)EFEUC ION
Number CQC7CsC5C4C3CZc1CO FUNCTION
1 111101101 Move Program Counter to Address Register
2 100001111 Set READ Control signal true, WRITE false
3 111001001 Move, Program Counter low order byte to Data Bus
4 111100110 Move Data Bus to ALU latches
5 011000000 Increment ALU latches
6 111100101 Move ALU latches to Data Bus
7 111001010 Move Data Bus to Program Counter low order byte
8 111110001 Move Program Counter high order byte to Data Bus
9 1117100110 Move Data Bus.to ALU latches
10 100001011 Skip next microinstruction if carry status = 0
1" 011000000 Increment ALU latches
12 1171100101 Move ALU latches to Data Bus
1 111110010 Move Data Bus to Program Counter high order byte
14 T1T1 1101001 Move Data Register to Data Bus
5 1111010190 Move Data Bus to.Instruction Regrster

are 15 microinstructions in the mstruction fetch microprogram, a total of 135 binary digits will be
required. na 9 X 15 pinary digit matrix, to hold the instruction fetch microprogram

Notice also that a sequence of 15 microinstructions are executed during the instruc-
tion fetch, which must occur during one period of clock §. The Control Unit will
therefore internally split the clock signal into 16 subdivisiens. In other words, «f the clock
has a perod of one microsecond each microinstruction must execute withm 62 5 nanoseconds
Since the average CPU chip consists of densely packed n-MOS or p-MOS logic. this time penod s
reasonable

Now consider, in detail, the 15 steps of the-instruction fetch microprogranvs

The first two bits of the first micromstruction’s @ it code. represenung CO and C1. are set o
and 0. respectively: they indicate that data wili b2 moved onto the Data Bus. or nto the Address
register (see Table 4-1). The next four bits are set 1o 110 1. they specify that it s the contents of
the Program Counter which must be moved to the Address register (see Table 4-2). Since no
simultaneous ALU operations are 10 take place. the last three bits are all set to 1 (see Table 4-3)
The creation of this microinstruction s iflustratedd as follows:

Cog C; Cs C5 Ca T3 Cp € Cin
Ll lifJofefrjo]]
———— o— -

! Move data Hnto Data Bus or Address register (see Table

4N
Program Counter is source (see Table 4-2)

No ALU operation (see Table 4-3)

If you have any ditfic ulty understanding the creaton of the first micromnstruction, you should study
some of the other microinstructions in detall. 10 see how they are also created from the informa-
tion in Tables 4-1. 4-2 and 4-3 R
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Microinstruction 1 moves the contents of the Program Counter to the Address register, thus mak-
ing the 16-bit contents of the Program Counter appear at the 16 address pins. Instruction 2 sets
the WRITE control signal false and the READ control signal true; this tells external logic that pins
AO through A15 provide the address of an external memory word, the contents of which are to
be placed at pins DO through D7. External logic has 687.5 nanoseconds, that is, the time it takes
to execute microinstructions 3 through 13, in which to fetch the requested data.

Microinstructions 3 through 13 increment the contents of the Program Counter, as is required
during every instruction fetch. Since the Program Counter is 16 bits long, while logic within the
CPU is only 8 bits wide, the Program Counter has to be incremented in two steps. Instructions 3
through 7 increment the low order half of the Program Counter. If this increment results in the
carry status being set (in the ALU only), then the high order half of the
Program Counter must also be incremented. If the carry status is not set. | STATUS IN
then the high order half of the Program Counter must remain unaltered. | MICRO-
Microinstructions 9 through 13 handle the high order half of the Program | PROGRAMS
Counter. These microinstructions parallel microinstructions 3 through 7:
however, microinstruction 10 specifies that if the Carry status {(in the ALU) is O, then microinstruc-
tion 11, which actually performs the increment on the contents of the ALU latches, be skipped.
Thus the high order half of the Program Counter is only incremented if the Carry status was set
when the low order half of the Program Counter got incremented.

Note that Control Unit logic must be very specific about when it records statuses
in its CU DATA buffer and when it does not. Use of the Carry (C) status as a means of con-
trolling the Program Counter increment is only valid if the Carry status is not permanently
recorded in the Control Unit. In other words, the Control Unit can reference the status latches in
the ALU any time. Assembly language instructions reference the statuses stored in the CU DATA
buffer, never the statuses in the ALU latches. Microinstruction code 00000011 must be executed
by the Control Unit if the statuses in the ALU latches are to be saved in the CU DATA buffer.

Now consider the five steps needed to complement the con- | COMPLEMENT
tents of the Accumulator. if. during the 15th step of the instruction | MICRO-

fetch microprogram, the code loaded into the Instruction register is a | PROGRAM
Complement Accumulator instruction code. then Control Unit logic will
branch to the microprogram shown in Table 4-5.

In order to complement the Accumulator, a 45-bit microprogram must be executed. Even though
these five microinstructions can be executed in 312.6 nanoseconds. system synchronization de-
mands that one period of clock  be set aside for instruction execution; therefore, the remaining
time will be wasted.

Let us now consider the tradeoffs associated with having simple | ASSEMBLY

or complex instruction sequences. With reference to the binary addi- | LANGUAGE
tion program which was described earlier in this chapter, recall that a | INSTRUCTION
word of data can be loaded from memory into the Accumulator in one of | MICRO- '
the following ways: PROGRAMS

1) Issue two separate instructions, each of which loads half of the Data Counter with half of the
data memory address for the data memory word whose contents must be loaded into the
Accumulator. Then issue a third instruction to load the contents of the addressed data
memory word into the Accumulator.

2) Use one instruction to load into the Data Counter the entire data memory address for the
word whose contents is to be read into the Accumulator. Then issue a second instruction to
move the contents of the addressed data memory word to the Accumulator.

3) Have a single direct addressing instruction which loads the data memory word address into
the Data Counter, then loads the contents of the addressed data memory word into the Ac-
cumulator.



Table 4-5. A Complement Accumulator Microprogram

'n:i';unc. MICROIggEUCTlON
'] Number [ C4C7C4CsC4C3C2C1Co FUNCTION
1 111000001 Move Accumulator to Data Bus -
2 111000110 Move Data Bus to Complementer
3 100000000 Execute Complementer logic
4 111000101 Move Complementer to Data Bus
5 1171000010 Move Data Bus to Accumulator

The instruction execution phase of each instruction, for the three ways in which data can be
loaded into the Accumulator, are shown in Tables 4-6, 4-7 and 4-8.

Table 4-6. Three-Instruction Memory Read

Instruc- | MICROINSTRUCTION
tion CODE
Number | CgC;C6CsC4C3C2C1Co FUNCTION
1 Repeat micronstructions 1 through 14 of Instruction
Fetch (Table 4-4)
14
15 1110100 10 | MoveDataBus to Data Counter. fow order byte

(A} Load low order half of Data Counter

Instruc. | MICROINSTRUCTION
tion
Number | CgC;CCsC4C3C,C1Co FUNCTION
B Repeat microinstructions 1 through 14 of Instruction
Fetch (Table 4 4)
14
15 111100010 Move Data Bus to Data Counter, high order byte

(B) Load high order half of Data Counter

MICROINSTRUCTION
Instruc-
tion ODE
Number | CgC;CgC5C4C3C2C1Co FUNCTION
1 1110011011 Move Data Counter 1o Address Register
12 1000101 11 | SetREAD Control signal true, WRITE false
3 111000000 Include 12 no operations to give external logic more
i ume to fetch data
14 1171000000
15 111110101 Move Data Register to Data Bus
16 111000010 Move Data Bus to Accumulator

(C) Load Addressed Data Memory Word Contents Into Accumulator
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Table 4-7.  One Instruction To Load 16-Bit Address Into Data Counter

Instruc- | MICROINSTRUCTION
tion CODE
Number | CgC,CCsC4C3C2C1Co FUNCTION
1 Repeat microinstrucions 1 through 14 of Instruction
- Fetch (Table 4-4)
14
15 111010010 Move Data Bus to Data Counter, low order byte
16 1110000600 Timing filier
17 Repeat microinstructions 1 through 14 of Instruction
- Fetch (Table 4-4)
30 )
31 11100010 Move Data Bus to Data Counter, high order byte

Table 4-6(C) provides second step for Table 4-7.
Table 4-8.  Single Instruction, Direct Addressing, Memory Read

. | MICROINSTRUCTION
Instruc CODE

tion
Number | CgC;C4C5C4C3C,C1Co FUNCTION
1 Repeat microinstructions 1 through 14 of instruction
- Fetch (Table 4-4)
14
15 111010010 Move Data Bus to Data Counter, low order byte
16 111000000 Timing filler
17 Repeat microinstructions 1 through 14 of Instruction
= Fetch (Table 4-4)
30
31 111100010 Move Data Bus to Data Counter, high order byte
32 111000000 Tirming filler
33 111001101 Move Data Counter to Address Register
34 100010111 Set READ control signal true. WRITE faise
35 111000000 Include 12 no operations to give external logic more
- tme to fetch data
46 111000000
47 T11110101 Move Data Register to Data Bus
48 111000010 Move Data Bus to Accumulator

The briefest glance at Tables 4-6, 4-7 and 4-8 shows that microprograms are
going to have a lot of duplicated microinstruction sequences. The very first thing a
microcomputer designer will do is try to eliminate this duplication by re-using fre-
quently needed microinstruction sequences.

Also. a microcomputer designer is going to develop some simple means of giving external logic
time to respond to a READ request, rather than having 12 no operation microinstructions, using
up 108 bits of the Control Unit storage space.

These are the complications which forced the early microcomputer designers to keep microcom-
puter assembly language instructions simple. There are many ways in Which microprogram se-
quences can be re-used, and time delays can be implemented; we left 16 microinstructions free
for just this kind of operation. Precious Control Unit storage is used up solving these complica-
tions, and the more complications there are within a single instruction, the more complex this ex-
tra Control Unit logic gets to be.
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CHIP SLICE BASED MICROCOMPUTERS

Suppose a microprocessor based microcomputer will not meet your needs; fre-
quently this will happen because the microprocessor is not fast enough. You are now a candi-
date for ‘‘chip slice’’ or *‘macro logic’’ based microcomputers, which let you design
and build your own CPU, with any CPU architecture {within limits), and any. or no assembly
language instruction set.

Before we examine what a chip slice product must consist of, a word of caution.
This discussion of chip slice products is something of a tangent within the context
of products discussed in this book.

Up to this point we have been describing microprocessors — CPU logic that will
be implemented on a single chip, or may be part of a single chip. Chapter 5 de-
scribes additional logic which supports microprocessor based microcomputers.

As compared to microprocessors, chip slice products take a wholly different
philosophical direction:

We build chips with less logic, where each chip provides one of the fundamental
building blocks of any CPU; then we justify less logic — and therefore more
chips — with increased performance.

Thus, you could use chip slices to build the equivalent of any microprocessor. You would then
have a product with perhaps ten chips instead of one. but it would execute instructions ten times
as fast.

Describing chip slices at the end of Chapter 4 implies that chip slices are essentially CPU building
" blocks.

That is the frame of reference in which we choose to describe chip slices;
however, when you have finished reading Chapter 5, you will realize that chip
slices could be used equally well to build the equivalent of any support logic
device, excluding ROM or RAM.

If we are to create CPU building blocks, how should CPU logic be divided | CHIP

so that the resulting pieces are very general purpose? SLICING
PHILOSOPHY

We cannot impose instruction set limitations; if we do, the CPU building
blocks will not be general purpose. Therefore, we begin by separating
control unit logic from the rest of the CPU:

All
- Registers
Status flags, 2
2] .
o Shifter 23]
& —»] Complementer, Q:_—_D 2
b Arithmetic and o
[e} .
£ Boolean logic
S
o
Buffer Register Q__——-_D
Data
F— Ir@‘f__ implement
separately
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Now if you refer back to our discussion of microprogramming, you will see that a
Control Unit, in reality, consists of a microprogram stored in Read Only Memory:

CU DATA

Control Unit (CU}

The shaded area marked “microprogram’* contains microinstruction sequences just like the se-
quences illustrated in Tables 4-5 through 4-8.

CU DATA represents a small read/write memory work space needed by the Control Unit

What we have ignored, so far, is the logic which will aliow you to pick your way
around the microprogram ROM — concatenating short microinstruction sequences Into any
macroinstruction’s response microprogram:

CU DATA

Start ——g

> MICROPROGRAM

o

Erd

The iliustration above arbitrarily shows four separate microinstruction sequences (shaded), which
must be executed in order to enable the logical sequence of events required by some undefined
macroinstruction. The broken line identifies the order in which macroinstruction sequences must
be executed.

Our Control Unit must have microprogram sequencer logic MICRO-
which allows'it to pick its way around the microprogram ROM, PROGRAM
as illustrated above by the broken line. Let us look at some of SEQUENCER
the functions that our Microprogram Sequencer Logic must be LOGIC

‘able to perform:

1) It must access a contiguous sequence of microinstructions, beginning with a defined first
microinstruction, and continuing for-a fixed number of microinstructions:

Definedd S1AM commgueleae
==
1
v
Fixed length, +
sequence of
nacromstructions <
-
—1
R 7




2) It must be able to branch to another contiguous microinstruction sequence:

Defined

start P 3

Branch to

next =

seguence

3
1
—

3) It mu;ﬁ be able to branch to a frequently used microinstruction sequence, such as a memory
access, then return to the point from which it branched:

Defined
start > -
sta %— Branch to
1 frequently
used —_—
sequence
Return r—

/

4) It must be able to continuously re-execute a single microinstruction, such as a No Operation,

some fixed number of times:

Detined
start

‘n”" re-executions of

4 a single micromstruction

/
\




The Control Unit, in reality, will become a microprogram ROM and associated

microinstruction sequencing logic:

All
Registers

—

Status flags,
Shifter
=1 Complementer,
Arithmetic and
Boolean logic

Data Bus

Control signals

i

Data
In/Out

Control signals
creation logic

T .
, 1

A

Microinstruction

b Microinstruction
sequencing logic}

Microinstruction,
ROM

e« — ]

CONTROL UNIT

REGISTERS, ARITHMETIC AND LOGIC UNIT CHIP SLICE

Now in practice, it is easier to implement Control signals creation logic as part of

the Registers, Arithmetic and Logic Unit:

Registers,
Anthmetic
and Logic
Unit

Microinstruction
sequencing logic|

Microinstruction
ROM

]

CONTROL UNIT |

We will begin our discussion of chip slice products with the Reglsters Arithmetic and Logic Unit,

which we will slice up into segments.
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In dividing up this logic, it is imperative that we place as few restrictions as possi-
ble on the number and organization of registers. Also, we cannot limit CPU word
size; even though we talk consistently about 8-bit microcomputers, it would be very short
sighted to assume that an 8-bit word size is going to last forever. Within the microcomputer in-
dustry you measure “ever’ in months, not years. We wili therefore slice up our registers,
arithmetic and logic unit into identical vertical slices, such that slices may be
stacked to form a CPU with any word size:

Fo
ur 2-pit Sliceg

.
"7 Slige
An 8-bit CPU

COntro/ Urm

A 12-bit CPU

We will refer to each slice as an ALU slice. ALU SLICE

2-bit ALU slices and 4-bit ALU slices are commonly seen. So
long as your word size is a multiple of 4, the 4-bit slice is superior, since itrequires
fewer chips.

If the combined registers and ALU logic is to be sliced up, each slice must be able to interface
with an identical neighbor on either side, in addition to a Control Unit.

Any simple ALU organization, such as illustrated in Figure 4-1, presents a lot of
problems. The innumerable data paths converging on the Data Bus are going.to become even
more complex. since the registers, if they are to be general purpose, cannot be predefined or
limited in number, as shown. You would have to construct impractical microinstructions to iden-
tify the innumerable valid data path combinations. Therefore we will reorganize our registers and
ALU with an eye to streamlining the data paths, while maintaining flexibility. Remember, -a suc-
cessful chip slice makes no assumptions regarding the architecture of the end product.

Now there are a very large number of microprocessor-based microcomputers on the market and
the number constantly increases; but there are very few chip slice products. Therefore we will
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reorganize the registers and ALU portion of Figure 4-1 to generally conform with
the organization of 2900 and 6700 series 4-bit chip slice products which are de-
scribed in Volume 1. Figure 4-3 illustrates this reorganization. 3000 series 2-bit chip slice pro-
ducts are conceptually very similar, and represent the predecessor of 2900 and 6700 series pro-
ducts. 10800 chip slice products represent the next generation — the logical evolution of 2900
and 6700 series products.

Figure 4-4 illustrates the concept of a “chip slice”’; the figure shows two 4-bit slices creating an
8-bit ALU. '
Let us look at Figure 4-3 in overview.

Some fixed number of registers must be specified within the REGISTER
Registers block. 16 registers are selected, since a 4-bit select BLOCK
code can address one of the 16 registers.

The Registers block has two output ports, AA and BB, plus one input port, ZZ. Having three ports,
the register block needs three sets of register select logic — one for each port. Select logic iden-
tifies the register which is effectively connected to each port at any point in time. We can get by
with two sets of register select logic by combining input ZZ select logic with either output port
AA or BB select logic. We will arbitrarily choose to combine ZZ and BB select logic. This means
that at any point in time the same register in the register block will be effectively connected to
both the ZZ and BB ports.

Thus the chip slice DIP needs four A port register select pins and four B port
register select pins:

—»] A0

Select Register Al | _—
for Port A % -

—>»1 A3 |
—»{ 520 ]

Select Register BZ1
for Port B or Z 822 -
—> 823 L
|— 4-BIT —
L ALU SLICE  —
- ——

Now consider the data paths between the Register’s block | DATA PATHS
and the ALU block.

The ALU block requires two input ports, marked PP and QQ. since a number of
ALU operations require two inputs to create one output. RR marks the output.
Input port PP can receive Registers block output AA or BB, or it can receive contents of the Buffer
register. XX marks a three-way junction whence input PP is derived.

Input port QQ can receive either Registers block BB output, or external data. YY marks the two-
way junction whence the QQ input is derived. .




Let us examine the external signals that will be required to support the in- | ALU INPUT
terface between the register and ALU blocks. If we assume that an addi- | iDENTIFIED
tional option is to input O at ports PP or QQ then the following input
combinations are allowed:

QQ: 0 o 0 O BB BB BB BB DI DI DI D
PP. O AA BB VW O AA BB VW 0 AA BB WV

BB - O is the same as O - BB, so ignore it.

Since AA and BB can have the same value, ignore BB - BB which can be made equivalent to BB -
AA; ignore DI -BB which can be made equivalent to DI -AA.

0 - 0 is ignored since an ALU operation will never require two O inputs.

We will use three input pins to identify the remaining eight possible PP-QQ input
combinations. These three input pins will become the low order three bits of a 9-
bit microinstruction code and will be interpreted as shown in Table 4-9.

DATA IN

16 x 4-bits of
unassigned
Register Block

4-pit wide
shifter

4-bit wide
Complementer,
Addition and
Boolean logic
(ALU Block)

4-bit wide shifter

4-bit wide
Buffer Register

Figure 4-3. Register. Arithmetic And Logic Unit
From Figure 4-1, Reorganized To Meet
The Needs Of A Chip Slice

4-50




VVVVVVVVV
Folele]s2328828

OOOOOOOO

OOOOOOOOO

OOOOOOOOO

000000000

OOOOOOOOO

n
B\\\\ L M A \\ ‘ \w

\w\\\\s\\\

\\ / : N\




The Registers block-ALU interface also requires four data in pins supporting the
data input to YY. Our DIP therefore looks like this:

—-)& DIO Jete——-
Select Register Al DI
| —
for Port A 77 | o2 Data in
—>1 3 | DI3 j—
—>[o)
Select Register Eal
for Port B or Z 822 -
23]
—>{o | |
Select ALU inputs { i 4-BIT
—>»l2 | ALUSLICE
- _—
Now move on to the Arithmetic and Logic Unit. CHIP SLICE
Notice that the shifter has been moved out, leaving behind comple- ::g':g‘érc'c
menter. addition and Boolean logic. Moving shifter logic out allows the UNIT
option of shifting data within a short recycle path through the Buffer

register (RRSSUUVVXXPP) or we can shift a final ALU operation result on
its way back to the Registers block (RRSSTTZZ).

The Buffer register in Figure 4-3 does not serve the same purpose that it did in Figure 4-1. In
Figure 4-1 the Buffer register provides the second ALU input whenever an ALU operation re-
quires two inputs. In Figure 4-3 the ALU inputs come from the two Registers block output ports
PP and QQ. In Figure 4-3, the Buffer register has become a holding location for intermediate
results of ALU operations. )

We will assign the next three bits of the microinstruction ] CHIP SLICE

code (I3, 14, 15) to define the ALU operations which are to | ALU OPERATION
be performed. There are only five isolated opera- |IDENTIFICATION
tions: ADD, COMPLEMENT, AND. OR, XOR. We could add

increment and decrement to the list; instead we generate the equivalent by pro-
viding an external carry in:

4-bit wide Complementer,
Addition and Boolean logic
(ALU Block)

Output RR results from inputs PP, QQ and Carry in.
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Combining the two input. options with the carry in and the: five ALU operations allows us to
generate the ALU operation codes illustrated in Table 4-10.

Our 4-bit ALU slice DIP will need three more microinstruction inputs, plus a Carry
in:

Define
ALU Operation

it AQ DIO
Select Register 77 ] DIt
for Port A A2 | 017 Data in
143 | O3 ft—
—>1820| Cl |<€— Carry in
Select Register BZ1}
for Port B or Z 522
—»10 |
| K
Select ALU inputs { [ 4-BIT
) ALU SLICE i
]

HERRREER
TITTTTITTTTITTId

Only the ALU destination remains to be specified; we will use | CHIP SLICE
three microcode bits for this specification. ALU
DESTINATION

These are the three possible destinations for ALU block out-
put:

11 The Buffer register. via SS and UU
2) The Registers block. via SS, TT and ZZ
3) Dataout. via SSand TT.

Data on its way to the Buffer register or the Registers binck may opt:onally be shifted left or nght
A bewildering variety of output options could be selected since data can be output 10 any or all of

Table 4-10. ALU Operations Specified By Middie Three Microcode Bits

MICROCODE FUNCTION
15 14 13 | General Carry.ln=0 Carry In = 1
0 0 © QQ - PP QQ - PP Q0 - PP+ i
PP fQQ s 0 Increment P2 QQ =0
QQPPisO increment DD PP =0
0 0 1 jaQ - (PR QQ PP - 1 PP QQ
{PP s the Ones complement PP Twos complement PP
ones complement | QQ s O Q0 s 0
of PP
0O 1 0 QQ OR PP Carry in plays no part in
o 1 1 QQ AND PP Boolean operations
10 0 QQ XOR PP
: 0 currently
1 : ? unassigned




three destinations, with shifting occuring along two of the destination paths. Until you have used
a chip slice product quite extensively, it will not be clear which of the output path options are
useful.

Table 4-11. ALU Destinations Specified By
Last Three Microcode Bits

BUFFER REGISTER REGISTER BLOCK
18 17 16 Data Out
Shift Shift
Q 0 0 No Yes No Yes
0 0 1 Left Yes - No Yes
0 1 0 Right Yes No Yes
0 1 1 No No Yes
1 0 O . No No Yes Yes
10 1 No Left Yes Yes
11 0 No Right Yes Yes
111 No Yes No Yes Yes

Bear in mind that we really have two types of ALU output — the temporary data
which is heading for the Buffer register and permanent answers which are heading
back to the Registers block. Based on this concept, Table 4-11 illustrates one way
in which destinations could be specified.

The only subject left to discuss is status. The Zero, Overflow | CHIP SLICE
and Sign status flags are easy to generate, so let us look at | STATUS
these three first.

Every chip slice will be built assuming that it can be the high order slice in | SIGN

the ALU. Every slice will therefore have logic which assumes that the data | STATUS
out lines represent the four high order bits of the eventual ALU word. The
high order line will therefore represent the sign bit:

Sign Status
High order sign bit
We can generate the sign bit directly from the high order data out line of every

single chip slice. Only the high order chip slice’s Sign bit will be used; other chip slice sign bits
will be ignored.




The overflow status can be generated from the two high order | OVERFLOW
lines of every chip slice data out, just as the sign status was gener- | STATUS

ted f the high order line:
ate rom € nign oraer ine X \ /

=

v

.

X

!
L
_

N

=
L

DON
\\\\\‘
Exclusive OR of Data Out
these two carries
becomes the
overflow status

*,
T

-
.
v

N\

]
-

7

4.

@)

As described in Chapter 2, the overflow status represents the Exclusive OR of carries out of the
penultimate and ultimate bits of a data word. OVERFLOW LOGIC CAN THEREFORE ONLY BE
GENERATED WITHIN THE ALU.

Generating a zero status is also quite straightforward. For ev- | ZERO
ery chip slice we will output NOT OR of the four data out lines: | STATUS

0o
] Zero Status
DO

By tying the Zero statuses of all chip slices within the CPU together you can create an overall Zero

IO IITIIIIT =

I etc

Overall Zero Status
Chip Chip Chip etc
Slice 0 Slice 1 Slice 2
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If LRS3 and HRSO are both connected to DIP pins, all we have to do is connect
these two pins and an 8-bit shift is created:

D7 D6 D5 D4 D3 D2 D1 DO LRSO
High order Lowv(;ier
slice slice

But when it comes to binary addition, the problem is less straightforward. When
shifting, LRS3 is created while the shift is in progress. When adding, the carry out is generated at
the end of the addition.

Here is a simplified illustration of this timing problem. For a shift, we have no problem:

p

CLOCK

Shift
DO0.D1.D2,D3

Create
LRS3

Shift

D4,D5,06.D7

For binary addition, we have a problem:

CLOCK

4 L

CARRY @‘
AN

D4,D5,06.D7
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We could perform the binary addition in four-bit increments, | CARRY
starting with the least significant four bits; and in this case, carry could STATUS
simply be rippled from one 4-bit slice to the next:

{ I oo i
Step 1 | ] : LALAG
—_—— J______|. B
R
Step 2 | | | |
| |y : |
| |z
'[— et —lf :_
Step 3 XXXX | I '
vyyy | .
V7773 I
"1 Sicez |V Sice 1 1 Sice 0

But rippling binary addition defeats the whole purpose of using | CARRY
chip slice products — to gain instruction execution speed. We must | LOOK
therefore add logic which allows the ALU to forecast whether a binary ad- | AHEAD
dition is going to create a carry, or propagate one coming in N

The rules for carry creation and propagation are simple enough

First consider carry propagation. If there is a carry in 10 binary addi- | CARRY
tion, then there will be a carry out so long as no two 0 digits are being ad- | PROPAGATION

ded — and thus breaking the propagation chan:

Two O digits
l 1 -—Carry in
10 0 1 1
No Carry 0 0 1 0 1
propagated——»0 1 1 1 O-«—~Carmes propagated

10 0 1
if P and Q represents binary digits entering the ALU via ports PP and QQ respectively. we con-
clude that a carry will propagate if
(Po OR Qo) AND (P, OR Q,) AND (P, OR Q,) AND (P; OR Qj) = 1

In order to determine whether a new carry will be generated, | CARRY

we must start at the high order end of the 4-bit unit and work | GENERATION
back to the low order end. Both high order digits must be one or one
high order digit must be 1 with a carry propagated from the penultimate digits

Txx-- TXXx-- Txx-- Txx--
XX -- TXX-- Oxx-- Oxx--
Carry: W o* i 0¥

1 0 0 1
P 1 1 - 0"
If C; represents the carry out of bit position i. then if C, = 1. generating a carry.
(P3 AND Q3) OR (C, AND (P, OR Q,) = 1
For C, to = 17 the same relationship apphies, with bit positions shifted down:
(P, AND Q,)OR{C,; AND (P, OR Q) =1

In this fashion the ALU can be provided with logic that predicts a carry generation.




Finally, this is the way pins must be assigned:

—
Select Register

for Port A
—_—

Select Register
for Port B or 2
—
—>
Select ALU mputs{
——*

Define { >

ALU Operation

—
Power ——pn
Ground =————3]

Select ALU Destmat;on{

0

g

EEEEE

®
N
w

5'

4-BIT
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1]

Clock =—>

ALU SLICE
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Data in

j——

f&~——Carry in

f———3-Carry out

F——Carry generated
|——>Carry propagated
——2Buffer shifter carry in
——»Buffer shifter carry out
l€&——Registers shifter carry in
——>Registers shifter carry out
-

Data out

——>

———» Zero status
—» Overfiow status
— Sign status

Carry generate logic will usually be provided on a separate ca- | CARRY
rry generate device. This device receives Carry Propagate (P)and Carry | GENERATE
Generate (G) signals, in the proper sequence, from the 4-bit ALU slices: t | DEVICE
generates and returns the correct Carry in (C) to each chip slice
ALY c3 ALU Cc2 ALU C1 ALY co
Shce - Shiee > Shice: Slhice o
3 2 ' 0
G2y Py G1 P1
P3 GO
. Carry Look Ahead
—_— <
G3 PO

THE CHIP SLICE CONTROL UNIT

The ALU slices, as we have described them, are driven by a 9-bit microinstruc-
tion, together with binary data input and various status/control signals.

The control unit must provide the 9-bit microinstruction code; 1 could also provide
the input status/control signals but typically it does not, tor reasons we will soon discuss

We are going to store the micronstruction code in a very fast Read Only Memory and create ad-
dressing logic whiei* accesses microinstructions in the proper sequence. The Control Unit
then consists of the microinstructions ROM and its addressing logic, as discussed

earlier in this chapter.

We car gain a lot of insight into desirable Control Unit addressing iogic features by looking back
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at the microprocessor microinstruction sequences which were developed in Tables 4-5 through
4-8. :

Under normal circumstances microinstruction codes are accessed se- | MICRO-
quentially. Therefore, the Control Unit addressing logic must have | PROGRAM
a Microprogram Counter (MPC), the equivalent of 2 Program | COUNTER
Counter which can be incremented after every microprogram access to
reference the next sequential microinstruction:

z ] Incrementing

D1:1 -~ Logic

We arbitrarily assume a 12-bit width for the Control Unit address logic — implying
a maximum of 4096,, microinstructions in the ROM.

Any microinstruction sequence is going to begin at some initial address; therefore Control Unit

addressing logic must be able to initialize the Microprogram Counter. Consider two

possibilities:

1) Every macroinstruction object code is going to be implemented by a microinstruction se-
qguence with its own initial address which must be loaded into the Microprogram Counter.
We will therefore provide direct data access to the Microprogram Counter:

Incrementer
Logic

MPC >

A
Y

DY
1

L]

D11

2) It would be highly desirable to have some general purpose microprogram origins to handle
special circumstances, or alarm conditions that may have nothing to do with execution of an
individual instruction. We will therefore provide a register where some such per-
manent address may be stored: .

D0 ey
: o MPC - Incrementer
D13 > - Logic
A
RO ey
B > Register
R11

Recall that the Control Unit addressing logic must be able to re-execute one instruction a number
of times. In our example, a “No Operation” instruction was re-executed simply to keep the Con-
trol Unit synchronized with external timing. We will therefore add an increment inhibit
control to the Microprogram Counter:

D0 ——
H —_ MPC > Incrfmemer
D1 e ogic
5
A ¥
> Register Increment
|21 [P Inhibit

Finally, recalil that there are frequently used microinstruction sequences which per-
form operations such as memory read or memory wrrite. We can handle this situation in
one of two ways.
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First consider having a number of address registers plus a Microprogram Counter Buffer:

: MPC Buffer
A
DO —————r
_ MPC |ncrLecr)mlecnter
D1 ———— 9
A
RO Register A > T
: Increment
1 Register B > Inhibit
Register C >
FH:1 P Register D

As illustrated above, the address of the first microinstruction for four frequently used
microinstruction sequences may be stored in Registers A, B, C and D. The Control Unit addressing
logic can save prior contents of MPC in the Buffer, then load the contents of one register:

MPC Buffer |

A

mpc ® Fe

[

v

Y

DO
D1 1 <
RO Register A
> Register B
: I Register C
R1; > Register D

The last microinstruction in the frequently usad sequence causes the Buffer contents to be
returned to the Microprogram Counter:

Incrementer
. Logic

1

Increment
Inhibit

MPC Buffer
A
D0 4
: > Mpc 4
D11 —— \
RO Register A >
: 1 Register B P
: >
»| Register C >
R11 I Register D L
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Another approach requires external logic to provide the starting address of each frequently
used microinstruction sequence. In this case, a stack of Buffer registers wil back up the

Microprogram Counter:

DO ~—

D171 —

RO ——»

R1] ————d

Buffer

Stack
—e
@

MPC < Incrementer

Logic
3
Register

increment
Inhibit

The buffer stack allows one frequently used microinstruction seguence to access another fre-
guently used microinstruction sequence This is sequence nesting. The stack is a common
microcomputer feature and is described in Chapter 6.

This is how the Buffer stack would work for microinstruction sequence A accessing microinstruc-
tion sequence B, which in turn, accesses microinstruction sequence C:

1) Microinstruction sequence A reaches the point where microinstruction sequence B must be
accessed. The current sequence A address is saved on the stack, then the sequence B ad-

dress is input:

Starting B
address

Buffer
Stack
—o
@
Address A /
> MPC < > Incrementer
Logic
y
> Register Increment
Inhibit




2) Microinstruction sequence B reaches the point where microinstruction sequence C must be

accessed. Step 1 is repeated:

Y4

- »i |ncrementer

Logic

Buffer
Stack
Address B
Address A
Starting C
address
D0 —Pm [
<> MPC
D11 ——
RO ———3»
B > Register
R11 >

increment
Inhibit

3)  Microinstruction sequence C completes execution, so the saved Address B is returned to

MPC:

DO ———p

Buffer
Stack

b

Address B @

Address A

Incrementer

D11t

RO ————

> Register

R11 >

Logic

‘—— Increment

Inhibit




4) Microinstruction sequence B,

returned to MPC:

in turn, completes execution, so the saved Address A is

A

Buffer
Stack
Address B
Address A
DO 3 [
<> MPC
D17 ———p T
RO ey
> Register
R1] =l

Incrementer

Logic

A

Increment
Inhibit

Assuming that our Control Unit addressing logic has a Buffer stack, two additional control
signals will be needed: one will push the contents of MPC into the stack, as illustrated in
Steps 1 and 2; the other will pop the top stack address into MPC, as illustrated in Steps 3 and 4.
Our Control Unit address logic DIP pin assignments will now be as follows:

Power — 3
Ground —]
Clock —myud

Bidirectional
Data/Address <4

Bus

>
Increment INhibit —— !
Push —]

A1
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COMBINING ARITHMETIC AND LOGIC UNIT WITH CONTROL
UNIT

Conceptually we are going to build a Central Processing Unit by combining ALU
slices with Control Unit addressing logic and a microprogram in Read Only
Memory as follows:

ALU Slices
A A 3
A
Control Unit Microprogram
Address Logic ROM

In practice a very considerable amount of additional external logic will be required
before the simple configuration illustrated above can perform as a Central Pro-
cessing Unit. For example, nowhere have we addressed the problem of receiving
or transmitting control signals. What about the microprocessor Read and Write
control signals? '

It would have been possible to add logic to the Control Unit that automatically senses and creates
CPU-type control signals. However, that assumes chip slice products are going to be used as CPU
building blocks only. The assumption is unwarranted.

By describing chip slice products in Chapter 4, a chapter devoted to Central Processing Units, we
cast chip slice products as CPU building blocks, which makes them conceptually easy to unders-
tand only because of the sequence in which information is being presented in this book.

Excluding control signal processing logic from the chip slice Control Unit means a lot of extra
work and extra logic must surround the chip slice and Control Unit set. But, at the same time, no
restrictions are imposed on the way these products are used.

In terms of our current discussion, therefore, we must conclude without demon-
strating the equivalent of an instruction fetch or a typical instruction’s execution,
because the type of information which would have to be covered before necess-
ary external logic could be adequately treated is beyond the scope of this book.



Chapter 5
LOGIC BEYOND THE CPU

In this chapter we are going to identify the additional logic that must accompany a
CPU in order to generate a microcomputer system that is comprehensive enough to
be useful.

We must separately identify the logical components of a microcomputer system
by function (e.g., CPU, RAM memory, ROM memory, etc.) but there is no funda-
mentally necessary correlation between logical components and individual chips.
As you will see in Volume Ii, there can be wide variations between the type of
logic which one microcomputer manufacturer will put on a single chip, as com-
pared to another.

PROGRAM AND DATA MEMORY
External memory is the first and most obvious addition needed to support the CPU
that was described in Chapter 4.
READ-ONLY MEMORY (ROM)
Interfacing ROM to a CPU is very simple.

As described in Chapter 3, entire words of memory are implemented on a single ROM chip. By
contrast, read-write memory (RAM) may require a separate chip for every bit of the memory
word.

The signals required by a ROM device are quite elementary. As one would logically
expect, a ROM device will require the following input signals:

1) The address of the memory word beiné accessed.

2) A read control signal which tells the ROM device when to return the contents of the ad-
dressed memory word.

3) A clock signal so that the ROM and CPU will be synchronized.
4} Power and ground.

The only output signals which the ROM device must have are eight data lines (for an
8-bit word), via which the contents of the addressed memory word may be trans-
ferred back to the CPU. Figure 5-1 illustrates a hypothetical ROM device. This ROM device is
connected to the CPU as illustrated in Figure 5-2.

Before describing a ROM access in detail, let us consider some of the non-obvious
features of a microcomputer system. '

Were a microcomputer system to consist of just the CPU and one ROM, | EXTERNAL
pins from the two devices could be directly connected. Since it must be | DATA BUS

possible for more than two devices to be present in a microcomputer B
system, signal connections are made via an External Data Bus, which may be likened to a com-
mon signal highway connecting chips of the microcomputer set




vdd | 1 A0 | )
Power and ground {Vss 2 Al
vgg | 3 A2
—» Clock 0 4 A3
- JED A4 Add Select
SS -
Y A5 T ress Selec
D2 AB
Dat D3 A7
- D Iy, A8
D5 A9
D6 S0 ﬁ
L |Lo7 st
—3» READ R S2
3 > Chip Select g—
S4
S5 ]

Figure 5-1.  Read-Only Memory Chip Pins and Signals

Notice that the 16 address signals of the CPU become ten | ROM DEVICE
word address signals and six device select signals at the | SELECT
ROM. This distribution of the address lines implies that the
ROM has 1024 (2'9) words of memory, and a 6-bit select code. Providing the high
order six address lines coincide with the 6-bit device code of the ROM, the ROM will decode the
low order ten address lines as representing one of its 1024 memory words. Then, when the
READ control signal goes true, ROM logic will place the contents of the addressed memory word
at the data pins DO — D7. If the six high order address lines do not coincide with the ROM select
code, then the ROM will ignore current events.

Frequently a ROM chip will have no chip select logic; then there will be a single
chip select signal, which must be generated by external logic. It is also very com-
mon for a ROM device to have two select inputs. For the ROM to be selected, one
input must be low while the other input is simultaneously high.

If the ROM chip has its own select logic, then the select code is a permanent feature of the ROM
chip design. If, for example. a ROM chip has the select code 001100, then this select code will
have been burned into the ROM chip when it was created, with the result that the ROM chip will
respond only to memory addresses 30004 through 33FF 4

Select
Code Lowest memory address

s AIEA )
0011000000000000

N Nt

3 0 0 0

Select

Code Highest memory address
A

bo11007T11 1111111
B R e e it
3 3 F F

5-2
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In other words, a ROM chip with one device select code must be looked upon as differing from
an identical ROM ‘with a different device select code.

If device select logic is external to the ROM chip, then the device select code is not a permanent
feature of the ROM; merely modifying the external device select logic will change the range aof
addresses within which the ROM device: responds to memory accesses. External device select
logic may be illustrated as follows:

A0

Al - 3

A2 >

A3 »

Ad > Word

A5 > Address

AB > Memory Address
Memory A7 » to ROM Device
Address < A8 »
from CPU A9, >

A0 ] Select 1 ——gp=Device

ANl galn-of-64 Select J

A12 »] Select »Select 2 g

A3 _gblogic 1 Device selects to other

A4 h »=Select n ! ; ROM and/or RAM devices

Logic that is internal to a ROM chip will never be of any concern to you, as a
microcomputer user. The way in which the ROM chip selects or deselects itself, the way In
which it responds to read control signals, the way in which it extracts necessary data and places
the data at pins DO - D7. are all completely irelevant since there 1s nothing you can do about it.

Consider a memory read instruction; timing for this instruction is reproduced here, as it appeared
in Chapter 4, but with the keying symbols @ and to hnk it to Figure 5-2

® ® ® ®

’ |
|
| I '
| I '
AO to A5 N CoRESS >< ADORESS
| |
i 1 |
I [ :
| :
READ |
| ! | A
1 —
| ! ‘
l Sobe DATA
DO to D7 | ‘ 1
| Instruction Data |
| Fetch I Fetch ' o
| Memory Read |
| Instruction 1
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Recall that so far as logic external to the CPU is concerned, there is no difference between an
.instruction fetch operation or a data fetch operation.

Each operation begins with clock @ rising (at @ ) at this time the CPU outputs an address on the
address lines, and at the same time sets READ high. The ROM receives these signals via the
External System Bus. If the high order six address lines {A10 - A15) coincide with the ROM select
code (SO - S5). then the ROM chip logic fetches the contents of the memory word addressed by
AO - A9, and places this data at DO - D7.

By the time @ goes low and READ goes low (at ), ROM logic must have placed the requested
data on DO - D7; data must stay on these lines until ® goes high again.

READ-WRITE MEMORY (RAM)

RAM interface logic is more complex than ROM interface logic. RAM logic must
be able to take data off the data lines of the External System Bus and place this
data in an addressed memory word; in addition, RAM logic must be able to extract
data from an addressed memory word and place this data on the External System
Bus data lines. Also, most RAM is implemented using a number of RAM chips,
with each chip supplying one or more bits of the data word.

Using a number of chips to support a single data word is a simple enough concept; it means that
each chip will only have one data pin, and this pin will be connected to one of the eight data
lines, DO - D7.

As described for ROM, RAM interface logic will partition the address lines AO - A15 into a device
select code and a memory address. However, there may be eight RAM chips (for an 8-bit word),
each of which has the same device select code. but is connected to a different data line on the
External System Bus. Figure 5-3 illustrates a single RAM chip with on-chip device select logic,
and Figure 5-4 shows one way in which RAM memory may be added to the ROM-CPU
combination illustrated in Figure 5-2.

A0
Al
A2
A3
A4
A5
AB
A7
A8
A9 z
SO
S1
W ::23 }ChipSelect<_
S4
S5 J

Vdd
Power and ground { Vss
Vgg

— - clock 0

- Data

Olh|lw|N|=

7~ Address Select .g——

pe)

— » READ
3 WRITE

Figure 5-3.  Read-Write Memory Chip Pins And Signals

Some microcomputers have special RAM interface logic devices. These devices may
refresh dynamic RAM and/or provide device select logic. The Fairchild F8 needs
special RAM interface devices because of its unique logic distribution. Figure 5-5 il-
lustrates RAM controlled by a RAM interface device.
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TRANSFERRING DATA
BEYOND THE MICROCOMPUTER SYSTEM
(INPUT/OUTPUT)

The transfer of data between logic that is part of the microcomputer system and
logic that is beyond the microcomputer system is generally referred to as In-
put/Output (1/0).

We will include, within the boundary of the microcomputer | MICRO-
system, all logic that has been specifically designed to operate | COMPUTER
in conjunction with the CPU. We will classify all other logic as | SYSTEM
external. BOUNDS

The interface between the microcomputer system and external logic must be
clearly defined; it must contain provisions for transfer of data, plus control signals
that identify events as they occur.

There are many ways in which data transfer between the microcomputer system and
external logic can be accomplished; but they all fall into the following three cate-
gories:

1) PROGRAMMED 1/0. In this case. all data transfers between the microcomputer system

and external logic are completely controlled by the microcomputer or, more precisely, by a
program being executed by the microcomputer CPU.

There will be some well defined protocol whereby the microcomputer system gives evi-
dence that data being output has been placed in a location where external logic can access
it; or, alternatively, the microcomputer system will indicate in some predefined way that it is
waiting for external logic to place data in some predefined iocation from which it can be input
to the microcomputer system.

The key charactenstic of programmed |/0 is that external logic does as it is told.

2) INTERRUPT {/0. interrupts are a means for external logic to force the microcomputer
system to suspend whatever it is currently doing in order to attend to the needs of the exter-
nal logic.

3) DIRECT MEMORY ACCESS. This is a form of data transfer which allows data to move
between microcomputer memory and external devices without involving the CPU in data
transfer logic.

The physical requirements for each type of I/0 will be described in turn.
PROGRAMMED 1/0

Data are transferred between a microcomputer system and external logic, in
either direction, via an /O port..
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An 1/0 port will consist of an 1/0 Port Buffer, connected to the PORTS
data lines of the External System Bus and to pins which ac-

cess external logic:
0
CO ) Other
——  gControl

CN ) Lines
WRITE
READ
\ B %) Data

ﬁ D7 J Lines
AO
— VAddress
Al5 Lines

1/0 BUFFER
ERERER

When external logic transmits data to the microcomputer system, it does so by presenting the
data at the I/O port pins, whence the data are stored in the 1/O buffer. The binary value
001001110 would be transmitted as follows:

7 DO
—9 D1
* D2

— D3 Data
¢ D4 Lines
2 2

O O—-00

From external logic

O O—=00

[ PN N o Y =)

1/O Port Buffer

The I/O Port Buffer cannot be constantly communicating with the data lines of the External
System Bus, as illustrated above, since the data lines of the External System Bus may be carrying
data to or from memory. If the I/O port were permanently communicating with the data lines of
the External System Bus, then every time external logic presented data at the |/Q pins, this data
would be propagated down the shared data lines with unpredictable consequences.

The microcomputer CPU will therefore select an 1/0 port and read the contents of the |/O Port
Buffer, in much the same way as data gets read out of memory. This parallel between reading
data out of /O Port Buffers and reading data out of memory is appropriate, since most microcom-
puter systems transfer a great deal of data to and from external logic; therefore, they have more
than one 1/0 port.
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We can develop a parallel /O device with one or more 1/0
ports, where the 1/0 Port Buffers have addresses, just as
memory words have addresses. A simple scheme would be to take
the high order address line (A15) and design microcomputer logic such
that whenever this line is 0, a memory module is selected, but whenever
this line is 1. an 1/O Port Buffer is selected. In other words, memory ad-

1/0 PORTS
ADDRESSED
USING

MEMORY
ADDRESS LINES

dresses of 7FFF ¢ and below will access memory words, whereas memory addresses of 8000,
and above will access |/0 Port Buffers. Using the READ and WRITE control lines, Figure 5-8 il-

lustrates a parallel {/O device with one port.

Vdd 1 DO ]
Power and ground 4§ Vss 2 D1
Vgg| 3 D2
—pclock @ | 4 D3 Data. g—s»-Microcomputer
A0 D4 r System
Al D5
A2 D6
A3 D7 |J
A4 W WRITE
Ab R READ
A6 1700 |
Address A7 1/01
—— . (A15 must be < A8 1/02
1 to select) A9 /03
Jor] 110 P
Al 1/05
Al12 1/06
A13 1/07 | )
Al4
L A15

Figure 5-6. A Single Port, Parallel 1/0 Interface Device

The device in Figure 5-6 is referred to as a parallel 1/0 device because data is written and read in

eight, simultaneous, parallel binary units.

Note that there is no reason why an 1/0 device should have only one 1/0 port. The
number of 1/0 ports that a parallel 1/0 device has is purely a function of the number
of pins that are economically available on a dual in-line package. The device illustrated in

Figure 5-6 uses its pins as follows:

1} Sixteen pins are connected to the address lines of the External System Bus and provide the
information needed to determine if this I/O Port Buffer has been selected.

2) Eight pins are connected to the data lines of the External System Bus and are used to transfer
information from the External System Bus to the I/0 Port Buffer, or from the /0 Port Buffer

to the External System Bus.

31 Two control lines, READ and WRITE, determine whether data will flow from the 1/O Port
Buffer to the External System Bus (read). or from the External System Bus to the 1/0 Port

Buffer (write).




4) Three pins are required for power and ground.
5) One pin is required for the clock signal.

That sums to 30 pins. which only leaves ten pins available for I/0 ports. Therefore. the parallel
1/0 device illustrated in Figure 5-6 can only support one I/O port.

There is, of course, an obvious way to increase the number of 1/0 ports on our parallel I/0
device. Having 16 address fines implies that the microcomputer system is going to address 32768
(2'%)1/0 ports and that is unlikely.

How about reducing the number of address lines to ten? Now 16 pins are available
for 1/0 ports and our parallel 1/0 device can have two I/0 ports, as illustrated in
Figure 5-7.

Vdd Vgg Ground
Power Vss 0 Clock g
A0 1/00
Al 1/01
A2 1/02
I/0 Port Address < ii :’;82 /0 Port A
AB 1/05
AB 1/08
A7 PARIf‘éLEL 1/07 J < External
| [ A8 INTERFACE | 1708 |] Devices
1/0 Ports Selected _ A1B 1/09
DO 1/010
D1 1/011
02 012 rI/O Port B /
Microcomputer g—sm Data D3 . 1/013
System T D4 1/014
D5 /015 |)
D6 W WRITE ag—
L o7 R READ g

Figure 5-7. A Two-Port, Paraliel 1/O Interface Chip

The ten address lines in Figure 5-7 will be divided as follows:

1) One of the ten address lines will be A15, since this line must be 1 in order to select an 1/0
port rather than a memory word.

2} The remaining nine address lines may be any nine of the other 15 address lines. For example,
if Address lines AO — A8 are connected, then addresses 80004 through 81FF,¢ will select

1/0 ports’
A9-A14 AQ-A8
are ignored maximum value
A15 must
be l—»1 0000001 111711111
e — e — e~
8 1 F Fig

In the unlikely event that this arrangement provides insufficient I/0 port addresses, address lines
A9-A14 could be included as part of the address transmitted to another parallel 1/0 device.
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The penalty paid, when the high order address line (A15) is used to select |/0 Port
Buffers, is that only 32768 (25), rather than 65536 (2'®) words of memory can be ad-
dressed. In the world of minicomputers, this reduction of addressable memory can be a severe
price to pay, just to simplify 1/O Port Buffer selection. In the world of microcomputers, the
penalty is not very significant, since very few microcomputers require 32768 words
of addressable memory (or anywhere close to that much memory). Typically. a
microcomputer application will require a total of between 1024 and 4096 words of memory.

Nevertheless, many microcomputer systems use separate ad- {1/0 PORT
dressing logic to select I/O ports. Figure 5-8 illustrates one possible | ADDRESSES
scheme which adds two control lines to the microcomputer CPU. One
control line, I0SEL, specifies that address lines AO — A7 contain the 1/0 Port Buffer select code.
The other control line, IORW, if high, indicates that the External Data Bus lines contain information
which must be read into the 1/0 Port Buffer. If IORW is low, then the selected I/0O Port Buffer
contents must be output to the data lines of the External Data Bus.

As you will discover in Chapter 7, the two methods we have described for selecting I/ O ports are
just two out of a bewildering array of possibilities. These two methods do, however, broadly
cover the most common ways in which 1/0 ports are addressed.

Unfortunately, the blind transfer of data between a microcomputer system and ex-
ternal logic will not always provide sufficient I/O capability. The following
necessities are missing:

1) The microcomputer system must be able to tell external logic when data has
been placed in an I/0 buffer and is therefore ready to be sampled. Conversely,
external logic must have means of indicating to the microcomputer system that
it has placed data in an 1/0 buffer and the data can now be read.

2} The microcomputer system, and external logic, must each have some way of in-
forming the other as to the nature of the data placed in an 1/0 buffer. Clearly data
being transferred between the microcomputer system and external logic is subject to various
interpretations. For example, it may be pure numeric data; but on the other hand it may be a
code identifying operations to be performed, or already accomplished. It may also be part, or
all of an address.

When the microcomputer outputs signals to external logic as a |1/0 CONTROL

means of identifying events or data, these signals are referred to

as 1/O controls. The same information travelling in the opposite direction, that is,
from external logic to the microcomputer, is referred to as I/0 status. The differentia-
tion of information into controls and status, based upon the direction of the information., is logical,
since we are dealing with a situation where the microcomputer is at all

times in control of events. In other words, the microcomputer outputs
controls to control external logic sequences. External logic cannot control

the microcomputer; it can only input status information for the microcomputer to interpret when
and how it sees fit.

Minicomputer systems will usually have a whole set of /O control and status lines
that are separate and distinct from 1/0 ports. Microcomputers more commonly allo-
cate one or more /O ports to function as control and status conduits, while separate
1/0 ports transfer data.

I/0 Port A in Figure 5-8 might be used to transfer data, while 1/0 Port B is used to transfer control
and status information. So far as the microcomputer system is concerned, the same instruction
sequences are used to handle data flow through either 1/0 port. It is the way the microcomputer
system interprets a data word that determines whether the word is data, control or status infor-
mation.
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INTERRUPT 1/0

Most microcomputer CPUs have a control signal via which external logic can demand
the attention of the microcomputer system. This signal is referred to as an interrupt
request signal because. in effect, the external logic is asking the microcomputer system to in-
terrupt whatever it is currently doing in order to service more pressing external logical needs.

We will begin the discussion of interrupts with an example that | THE CONCEPT
is too simple to be realistic, but contains all the key features ofa | OF AN
meaningful application. INTERRUPT

Suppose a microcomputer system is being used to control the temperature of
shower water, as illustrated in Figure 5-9. A thermometer measures the temperature
of the mixed hot and cold water issuing from the shower head and transmits this
temperature, as a digital signal, to the microcomputer system. The microcomputer
system compares this temperature to a set point, which is supplied by an appropri-
ate control. Depending on the difference between the real and desired shower tem-
perature, the microcomputer system outputs data which must be interpreted as a
valve control signal, causing the valve to increase or decrease the hot water flow.

There are a number of reasons why this simple sounding application is, in reality, far from simple.
As experience will have taught you, there is some delay between the time you adjust a shower
tap and the time that the water issuing from the shower head changes temperature. For this
reason, a non-trivial program will have to be executed by the microcomputer to en-
sure that it does not attempt to make ridiculous adjustments. We will call this pro-
gram ADJUST, and illustrate it residing in program memory as follows:

MEMORY
0400 «— Start of Program

Arbitrarily selected
memory addresses ADJUST

073E «—End of Program

Another program, called RECORD, will input data from the temperature sensor, correctly in-
terpreting the data to represent temperature readings. The only contact between programs
RECORD and ADJUST are that ADJUST will anticipate finding data in a certain area of data
memory and RECORD will place the data in correct format, in that required area. Our memory
now looks like this:

MEMORY
0080
DATA
0100 Start of Program
Data placed RECORD
in data buffer
by RECORD End of Program
1 1
Data read out ! H
of data buffer, Start of Program
by ADJUST ADJUST
073E End of Program




MICROCOMPUTER

CONTROLLER
AND
TEMPERATURE EE\?&_BFIJ:E&ATURE
il \
i g
===_CONTROLS szs=

Figure 5-9. A Microcomputer Controlling The Temperature of Shower Water
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The way in which shower head temperatures are read and transmitted to | HANDLING AN
the microcomputer system is another feature of this problem which is not | INTERRUPT

as straightforward as might appear. It will take approximately half a second | REQUEST

for an inexpensive temperature sensor to record a temperature. Half a
second may not seem like very much time, but a microcomputer can execute approximately a
quarter of a million instructions during this time period.

How is the microcomputer going to know when the temperature sensor has a new value to
transmit? If the temperature sensor simply tries to send data to an 1/O port. the microcomputer
system is very likely not to read the temperature. One reading can easily get lost in a quarter of a
million instruction executions.

One way of resolving the problem is illustrated in Figure 5-10. A three- |INTERRUPT
step sequence allows the temperature sensor to call the JREQUEST
microcomputer system'’s attention as follows:

@ The temperature sensor transmits an interrupt request signal (IREQ) to the
microcomputer system via an External System Bus control line.

@ The microcomputer system has the choice of accepting or |INTERRUPT
rejecting the interrupt request: it accepts the interrupt re- | ACKNOWLEDGE

quest by outputting an interrupt acknowledge signal
(IACK) on an External System Bus control line.

@ The external device uses the interrupt acknowdge signal as an enable signal. to
transmit data to |/0 Port A. Also, the external device must remove its interrupt
request signal upon receiving an interrupt acknowledge since, clearly once the
interrupt request has been serviced, the external device is no longer requesting
another interrupt.

Timing for this three-step sequence may be illustrated as follows:

IREQ _._®| @
(ACK @

DATA \% ®

Note that although we have been talking about the external device inputting data to the
microcomputer system, data flow could just as easily be in the opposite direction; in fact, there is
no reason why any data flow need follow an interrupt. The program executed following an inter-
rupt could, for example, simply output control signals.

The purpose of the interrupt is to tell the microcomputer that it must suspend
whatever it is doing, process the data being input, then carry on with its suspended
operations. With reference to programs RECORD and ADJUST, this is what happens:

* Interrupt requested!

ADJUST @ @ continue executing
executing ADJUST

execute

RECORD ©
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Refer again to Figure 5-10. Steps @and @cause the interrupt request to be sensed by the
microcomputer at @above, The microcomputer CPU responds by suspending execution of AD-
JUST, while executing RECORD (to ©)v While RECORD is executing. the data transmitted by
the temperature sensor (@m Figure 5-10) is read into the microcomputer system, since program
RECORD has been written to anticipate arrival of this data.

When RECORD has completed execution at © execution of ADJUST continues at @ picking
up exactly where it left off at @

The key feature of program RECORD's execution is that it is an unscheduled event.
There is no logic within the microcomputer system that can predict when or how often program
RECORD will be executed. However, there is logic within the microcomputer system that can
suspend any program’s execution, later restarting execution from the exact point of suspension.

A MICROCOMPUTER’S
RESPONSE TO AN INTERRUPT

At its most elementary level, a microcomputer CPU could respond to an interrupt re-
quest by simply loading into the Program Counter the starting address of the pro-
gram that external, interrupting logic wants executed. But that begs two questions:

1) What happens to the program that was being executed?

2} Where does the microcomputer CPU get the address of the program which the
interrupting logic wants executed?

Consider first what happens to the program that was being executed.

The old program may have important information in the status flags, the | SAVING

Data Counter and Accumulator; this data is going to be wiped out by the REGISTERS
new program, so that when the new program has finished executing. the | AND STATUS
old program will no longer be able to restart. This problem is resolved by
saving the contents of all CPU registers, including the Program Counter, before starting to execute
the new program. When the new program completes its execution, the saved Program Counter
value is the address of the instruction that was about to be executed when the old program was
interrupted; so, by merely restoring the saved values into the CPU registers, the old program can
pick up where it left off. This concept 1s illustrated as follows:

CPU
Data Registers
Memory / 27 IA This is the situation when
0060 27 06A3 PC ADJUST is interrupted to ex-
oo [0y o Joe o O onen o
0062 A3 41 | have been arbitrarily selected)
0063 00 }
0064 A4 m from Status
0065
Data CPY
Memory Registers
0060 77 | ——»1 32 | A This is the situation when
021E PC RECORD has finished execut-
0081 06 }/ 0100 ocC ing and ADJUST must con-
0062 A3 tinue where it left off.
0063 00 ' (Registers contents are again
0064 a arbitrarily selected.)
0065 | ———> to Status
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An interrupt will not be acknowledged until the current instruction has completed executing. This
being the case, there is no need to save the contents of the Instruction register, since it contains
an instruction code which has been processed. In other words, the interrupt directly precedes the
arrival of a new instruction code.

There are two ways in which the old program status flags and registers’ contents
may be saved, as illustrated above, before the new program starts execution. One way wouid
be for the interrupt request signal to initiate execution of a microprogram (stored in the Control
Unit), which simply writes the contents of CPU registers into a data area of memory which has
been set aside for this purpose. A microcomputer designer may be reluctant to use up precious
Control Unit space in this way, and instead may require the programmer to write a short program
which will do the same thing. Such a program is calied an “Interrupt Service Routine.”

Atthe end of the new program’s execution, whatever logic was used to | INTERRUPT
save the old program's registers’ contents must be executed in reverse, to | SERVICE
restore the old program’s registers and status. ROUTINE

We will consider Interrupt Service Routines in more detail in Chapter 6, after we have discussed
programming in more detail.

Now consider how the microcomputer CPU gets the address | INTERRUPT
of the program which the interrupting logic wants executed. | ADDRESS
We will refer to this as the interrupt Address Vector. VECTOR

There are almost as many ways of determining which program must be executed following an in-
terrupt request as there are microcomputers. In the case of our shower temperature control prob-
lem. there is an easy solution. The shower head temperature sensor 1s the only external device
that can request an interrupt, and there is only one program it can want executed following the
interrupt. This being the case, the microcomputer CPU could be built with internal logic that
causes one program, origined at one specific memory address, to be executed following an

i t:
INMEMURL ARITHMETIC AND
LOGIC UNIT
——mmme————mq _
| <->L STATUS FLAGS jﬁ
| | s
| - > ACCUMULATOR
| SHIFTER jJ—D
| | - DATA COUNTER
I - PROGRAM COUNTER
| <—>[ COMPLEMENTER
. “ > INSTRUCTIONREG |
| | 3
! ADDITION J E
|l AND BOOLEAN » ©
1 LOGIC Ri
L ————— _l INTERRUPT ADDRESS VECTOR
CONTROL UNIT

L BUFFER REGISTER ]‘—»‘ L /

IREQ IACK

Now every time the Control Unit receives an interrupt request (IREQ) and it is ready
to service the interrupt, it does as follows:

1) Send out the interrupt acknowledge signal, IACK.

2) Save the contents of Status Flags, the Accumulator, the Data Counter and the
Program Counter, or else allow the programmer some way of doing the same
thing.
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3) Move the contents of the Interrupt Address Vector to the Program Counter.

A minicomputer programmer would consider this method of responding to interrupts
as laughably ridiculous. Who knows when and how the minicomputer may next have
to respond to an interrupt? To specify that all interrupts will be serviced by a pro-
gram origined at memory address 040046 (for example} would be an intolerable
restriction, because it reduces the minicomputer programmer’s ability to be flexible.

In microcomputer applications, having fixed interrupt address vectors nrakes a cer-
tain amount of sense. Remember that microcomputers are going to be used as logic
components, not as general purpose computers. Most microcomputers are used in
dedicated, non-varying situations, where one, or a few specific interrupts will require
equally specific responses from the microcomputer system.

Figure 5-11 shows how the parallel I/0 interface device and the ROM device from
Figure 5-8 could be modified to receive the interrupt request signal IREQ. Each device,
as modified in Figure 5-11, contains a 16-bit register, in which an interrupt address vector is per-
manently stored. Upon receiving the interrupt acknowledge signal IACK, the device transmits an
interrupt address vector to the CPU, via the address lines of the External System Bus. After saving
the contents of status flags and CPU registers, the CPU loads the interrupt address vector into the
Program Counter.

The Parallel /0 Interface device, only having eight address pins attached to AQ - A7, will have to
transmit its interrupt address vector to the CPU in two halves; and the CPU Control Unit
microprogram will have to load each half appropriately into the Program
Counter. This is referred to as multiplexing lines, that is, using the same | MULTIPLEXED
bus lines to carry signals that must be interpreted in different ways at | LINES

different times.

Notice that we have a problem with the Parallel 1/O interface device, as illustr-
ated — we have run out of pins. IACK has to be input somehow in response to IREQO. The
best way of resolving this problem is to replace the address pins AQ - A7 with three chip select
pins CO, Cl and C2. That leaves five unused pins, one of which can be assigned to IACK:

Two halves
of interrupt Vdd [5) Select chip
address vector o s C1 Select 170 Port A or B. or
V. T [ One: half of interrupt address vector
™ : < : 385 VOO
0
-—1 00
< 101
[ 02 JACK
g 103
a 104 NO  f——
O 105 D1
=
- 106 D2
-———— 107 D3
-———] 108 D4
@ o e
— 0
o 011 PARALLEL 7 jt——
8 012 1/0 I0SEL
9 013 INTERFACE ";)ER(\;
- _— [0
———1 1015 ——

The Parallel 1/0 interface device changes in two important ways.

First, CO, Cl and C2 will be the product of additional chip select logic, which receives some or all
of the external system bus address lines as inputs.
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Second, the data bus is now multiplexed: at different times it may transmit data or an address to
the CPU.

Having external chip select logic is the rule rather than the ex- |seLECTING
ception among real microcomputer support devices. In realty. ||/0 DEVICES
the external select logic frequently does not exist. Since there are very
few 1/0 devices in a typical microcomputer system, and more than 32K bytes of memory is rare,
you could create CO as the AND of A15 and any other address line:

AQ ——
Al
A2 ey
A3 —
Al
Ab —_—
AB

AT
A8 5 co
A9

Any two of the 14 unused address lines can be tied to Cl and C2, in order to select one of the
four addressable locations on the Parallel 1/0 interface device. Consider this example

A0 5 CI
Al 3 C2
A2 ——
A3
A4
AS S —
T
Al —

Y
AY
A0

ANl

A2
A13

Al4

Memory addresses may select ports as follows:

15141312110 9 8 7 6 54 3 2 1 0

[ l1]ofojofojofofoJojofofofofv]v]

T B
\
) 00 = Port A

01 =Port B
10 = Interrupt vector upper
11 = Interrupt vector lower

Must all be O to be sure
no additional device is
simultaneously selected

Must be 11 to select device
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Thus C000,, addresses Port A
C001,, addresses Port B
C002,, addresses Interrupt Vector Upper
C003,, addresses Interrupt Vector Lower

Multiplexing the data bus is not a real problem:; it simply means the interrupt service
routine — the program executed immediately following the interrupt acknowledge - must
read the contents of memory locations C002,, and C003,,, and treat these two data
bytes as the starting address for the program to be executed next.

Having the interrupt request signal arrive at memory or interface devices, rather than
at the CPU, means that for every memory or interface device in the system, a
different external device can have its own interrupt service routine identified for
post-interrupt execution. This concept is illustrated as follows:

PROGRAM
MEMORY
(" 0200 - ROM device 1 provides this
interrupt address vector
02A0 ‘ - 1/0 device 1 provides this
interrupt address vector
Arbitrarily selected
memory addresses ﬁ
031A - ROM device 2 provides this
interrupt address vector
{_ 04CO - ROM device 3 provides this

interrupt address vector

In the above illustration, interrupt request signals arriving at ROM devices 1. 2 or 3 will always
specify execution of programs stored in memory with execution addresses 02006 031A,¢ and
04C0,6, respectively. An interrupt request signal arriving at Parallel 1/0 Interface device 1 will al-
ways specify execution of a program stored in memory with execution address 02A0,¢. Each in-
terrupt request arrives as a separate and distinct IREQ signal; it is passed on to the CPU as IREQO.
When the CPU acknowledges with IACK, the ROM or /O device requesting the interrupt
transmits the interrupt address vector, which is a permanent feature of the ROM or I/O device.

But a new problem arises when more than one device capable of requesting an in-
terrupt is included in a microcomputer system. What happens when more than one
device simultaneously requests an interrupt? Which device is to be
acknowledged, and how do we prevent the other devices from also acknowledg-
ing? :

There are two parts to the answer. First, we must provide devices with a means cf identifying
themselves: we use select codes for this purpose. Next we must include interrupt prionty arbitra-
tion logic.

Let us examine these two concepts.

INTERRUPTING DEVICE SELECT CODES

Consider an improved model of our shower temperature controller. designed to control the tem-
peratures of many showers for motels and hotels. A microcomputer would certainly be fast
enough to monitor and control shower head temperatures for 100 or more showers.
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It would not be very economical or practical to require a new memory or I/0 inter-
face device to be added to the microcomputer system for every new shower to be
controlled. Many microcomputers will therefore require an external device, when
requesting an interrupt, to accompany the request with an identification code.
Figure 5-12 shows how an external device may connect directly to the External
System Bus, placing its identification code on the data lines of the External
System Bus when the CPU acknowledges its interrupt request with IACK. With
reference to Figure 5-12, events proceed as follows:

@ External device logic creates an interrupt request signal, which it transmits to the CPU as
IREQ.

@ When the CPU is ready to service the interrupt request, it responds by outputting IACK.

@ Upon receiving IACK, external-device logic places an 8-bit select code on the data lines of
the External System Bus. The CPU receives this data and interprets it as an external device
identification code.

@ Following protocol specified by the microcomputer system, the external device places its
data at a Parallel I/O Interface device's 1/0 port.

The idea of having external devices identify themselves with a code, as iliustr-
ated in Figure 5-12, makes a lot of sense to a minicomputer user (or designer), but
to the microcomputer user it has one elementary flaw: it demands intelligence of
the external device. Remember that a minicomputer may cost thousands of dollars and may
be part of a system costing tens of thousands of dollars. Very few microcomputers cost more
than $100. so we can only justify using a few dollars worth of logic to generate a device select
code.

Here we have another reason why minicomputers and microcomputers are, and are
likely to remain, fundamentally different. The cost of providing external devices with
the logic implied by Figure 5-12 may only be a few dollars, which is trivial in the
world of minicomputers. But a ROM device, or a Parallel 1/0 interface device, also
only costs a few dollars; therefore, every demand for dedicated intelligence in exter-
nal devices is, comparatively, an expensive demand in the world of microcomputers.
External device select codes, which are so obvious in the world of minicomputers,
are an expense which must be justified on a case-by-case basis in the world of
microcomputers. Chip costs increase very little with chip complexity, so economics
demand that the microcomputer system does as much as possible, and demands as
little as possible of external logic.

Consider a simple example. Two minicomputers are priced at $3250 and $3640. Options that are
not easily compared make the two prices hard to evaluate, in determining which minicomputer is
really more expensive. If one minicomputer system requires that an external device have $10
worth of extra logic in order to request interrupts, this extra expense will only have a limited im-
pact on overall economics.

Two microcomputer systems, configured for one very specific application, cost $53 and $61,
respectively. If an external device will need $10 worth of extra logic to request an interrupt on the
$53 microcomputer system, but not on the $61 microcomputer system, then the $53 microcom-
puter system may well be eliminated for this single reason.



INTERRUPT PRIORITIES

What happens when more than one external device requests an interrupt at the
same time? This problem can be resolved in two ways. First, logic within the
microcomputer system can have a number of interrupt request lines with ascending
priorities, as follows:

S
Power and Vdd 0o
Ground Vss D1
Vgg D2
»-Clock [0} D3 L
r A0 D2 Data g—pm
A1 D5
A2 cPu D6
A3 D74
A4 w WRITE g
AB R READ — g
AB IOSEL ——gom
-¢—p-Address 4 A7 IORW g
A8 IACK g
A9 IREQ 1~ Priority 1 Interrupt request
A10 IREQ2 g— Priority 2 Interrupt request
A1 IREQ3 g—Priority 3 Interrupt request
A12
A13
Al4
A5

A special Interrupt Priority device could do the same job, using | INTERRUPT
fewer CPU pins. Consider the Interrupt Priority device illustrated | PRIORITY
in Figure 5-13. CHIP

Before discussing how the Interrupt Priority device illustrated in | INTERRUPT
Figure 5-13 works, we will define what is meant by interrupt | PRIORITIES

priorities. AND WHAT
THEY MEAN

Suppose more than one external device may request an interrupt. If two
or more external devices request interrupts by SIMULTANEOUSLY send-
ing IREQ signals that overlap in time, then WHICH external device gets the interrupt acknowledge
(IACK) is determined by interrupt priority:

Device IREQ (second priority) -
A

Device IREQ (third priority) - MICROCOMPUTER
B SYSTEM

IACK—""]

Device | IREQ (first priority)
C




vdd 00 )
Power and Ground { Vss D1
Vgg D2
— 3 Clock _ [0} D3 \ ata
10 D4 -~
il Db
12 INTERRUPT D6
13 PRIORITY D7
14 100 ﬁ
15 01
16 Interrupt request lines, 16 102
with 16 priorities (O highest, < 17 103
15 lowest) B 04 > 1/0 Port
19 |05
110 106
111 107 J
112 w WRITE g—
113 R READ —q—
114 IREQO —
L LIS IACK  —

Figure 5-13.  An Interrupt Priority Device

In the above illustration, external devices A. B and C all request interrupts by simultaneously

transmitting IREQ signals to the microcomputer system. By whatever priority arbitration technique

the microcomputer system is using, it is determined that Device C has the highest priarity, Device

A has the second prionty and Device B has the lowest priority. The single acknowledge signal,
} IACK, must therefore be sent to Device C.

The fact that Devices A and B did not have their interrupt requests acknowledged does not imply
that they must remove their IREQ interrupt request signals. They can do so if they wish. If they do
not. they wilt be acknowledged. in turn, when the microcomputer CPU is subsequently ready to
acknowledge interrupts again.

Refer again to the illustration of Devices A, B and C, all simuitaneously requesting interrupt serv-
ice. There are three interrupt service programs residing in memory, one for each device. These
programs may be executed as follows:

Re-enable interrupts

Acknowledge IREQ \ Acknowledge IREQ ™\ - Acknowledge IREQ
from Device C « from Device A ~ _ from Device B
~ ~~
) ® N/ © i/ Q)

l\ © f ® 4 A
S ———  _ ____\ Disabie interrupts —
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@ represents the main program which is executing, and which gets interrupted. First Device C's
interrupt service routine gets executed at@. Subsequently Device A and B's interrupt service
routines get executed at @and, respectively.

If interrupt service routines © @andare to be executed sequentially, as illustrated above,
then whxle@ns executing. the microcomputer system’s interrupt handling logic must be dis-
abled, so interrupt requests (IREQ) from Devices A and B are ignored. At some point, aﬁer@

completes execution and has resumed executing, the microcomputer system interrupt logic
is re-enabled; now IREQ from Device A is acknowledged. While @ is executing, the microcom-
puter system’s interrupt handling logic is again disabled until some time when has resumed

execution. Since Device B is still requesting an mterrupt,now gets executed.

Special instructions are used to enable and disable interrupt logic in microcomputer systems.
These instructions, and how they should be used, are described in Chapter 7.

Suppose the microcomputer system did not disable its interrupt logic while executing interrupt
service routines such as @ and © This is how the interrupts would be serviced:

[
>

The important concept to understand is that interrupt priorities determine which
device receives the interrupt acknowledge IACK when more than one device is
simultaneously requesting an interrupt via IREQ.

Interrupt priorities have nothing to do with whether can be interrupted by
Device A once ©has started executing. Device A has lower interrupt priority than Device
C: however, once Device C's interrupt request has been acknowledged, Device C removes its in-
terrupt request. Device A’s interrupt request is still present and is the highest priority interrupt re-
quest. The instant program ©enab!es interrupt logic, it will immediately be interrupted, and pro-
gram@ will execute. If you do not want program ©1o be interrupted, then when you write
program@ you must make sure it keeps interrupt logic disable. Instruction steps to do this are
described in Chapter 7.

Let us now return to the Interrupt Priority device illustr- ] INTERRUPT
ated in Figure 5-13, and explain how this device works. As | PRIORITY AND
illustrated, there are 16 separate and distinct lines via which external MULTIPLE
devices can transmit interrupt request (IREQ) signals to the Interrupt | REQUEST LINES
Priority device. Signals terminate at pins 10 through 115. 10 has highest
priority, while 115 has lowest priority.

When one or more interrupt requests arrive at pins 10 - 115, logic within the Interrupt Priority
device sets IREQO high.

At some future time the CPU responds by setting 1ACK high.
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When the Interrupt Priority device receives IACK high, it sets IREQO low again. then places the
lowest interrupt reguest line number on DO - D3.

For example, if one IREQ arrives at 15, 0101 is output via DO - D3 when IACK is sensed high. If
two IREQ signals arrive, at pins 16 and 113, 0110 is output at pins DO - D3 when IACK is sensed
high.

Timing is as follows:

IREQ /L
IREQO /L
DO - D3 2X X
IACK

Once the interrupt has been acknowledged, the Data, I/0. READ and WRITE signals are used to
transmit data to and from external logic. The data lines interface the Interrupt Priority device to the
External System Bus, while the 1/O pins interface the Interrupt Priority device with external
devices, as illustrated in Figure 5-14.

External devices can use an Interrupt Prionty device to initialty request an interrupt, but once the
interrupt has been acknowledged, the external device can transfer data to or from the microcom-
puter system via the data lines of the External System Bus. Of course, this means that the external
device is selected via memory addresses, as described earlier in this chapter.

The important point to note is that any programs executed after an interrupt has
been acknowledged use the same logic as programs executed before the interrupt
was acknowledged. Interrupt logic applies only to the process of requesting and
accepting an interrupt. If external devices connect to the microcomputer system
via 1/0 ports before the interrupt, they will do likewise after the interrupt has
been acknowledged. If external devices connect to the microcomputer system via
the data lines of the External System Bus, they will do so before and after an in-
terrupt is acknowledged.

If a microcomputer system only has one interrupt line, or if | INTERRUPT
there is more than one external device using the same priority PRIORITY
interrupt request, then a method called ‘‘daisy chaining’”” must | AND DAISY
be employed to determine interrupt priorities. CHAINING

A number of devices in a daisy chain will all connect to the same interrupt request line IREQ. The
interrupt acknowledge line, IACK, however, will terminate at one external device. This device
must have internal logic which passes on the interrupt acknowledge if the device is not request-
ing an interrupt. but traps it otherwise. Each external device in the daisy chain contains this same
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logic, except for the last device. which has nowhere to pass the acknowledge on to. Daisy chain-
ing may be illustrated as follows:

IREQ
1 i ] i
Device Device Device Device
4 3 2 1 To Microcomputer
System
4 A i )
L
IACK

There are strengths and weaknesses associated with having separate priority
lines, or daisy chains, in microcomputer systems. In either case, the question becomes some-
what academic since, as described in Chapter 6, a microcomputer system that is being inter-
rupted by a great multitude of external devices is probably being misused. Nevertheless, let us
consider some of the strengths and weaknesses associated with separate interrupt priorities, and
with daisy chains

There are situations where separate interrupt priority makes sense, because the
microcomputer CPU must attend to one external condition at the expense of all
others.

For example, most minicomputers- have a highest priority interrupt which is acti-
vated by a power failure. Whiie this may not at first make a lot of sense, consider what hap-
pens when power does go down.

Microcomputers typically use +5 and/or + 12 volt DC power supplies | POWER FAIL
which are generated from the normal 110 volt AC power line. Power | INTERRUPT
failure might be detected when power falls below 90 volts. But it may be
a few thousandths of a second before power drops so low that +5 and + 12 volts cannot be
maintained for the microcomputer. In these few milliseconds, a hundred or more microcomputer
instructions may be executed to prepare for power failure in an orderly fashion; now when power
comes up again, the power fail interrupted program can restart without loss of data.

We have described one situation where separate interrupt priority lines make sense. Next con-
sider the limits of daisy chaining.

Daisy chaining will handle a number of devices, all of which require interrupt service. so long as
the number does not become too large. Consider how little service the 100th shower would get
if the microcomputer system must first respond to the needs of the 99 showers that came before
itin the daisy chain. It is quite conceivable that the microcomputer system will be so busy attend-
ing to devices situated at the beginning of the daisy chain that the tail-end devices would get little
or no attention. The occupant of Room 100 will get scalded — or freeze.

Another problem with daisy chaining is that it demands intelligence of any exter-
nal device in the daisy chain. Once again. we are dealing with microcomputer economics.
External devices in a daisy chain must identify themselves, otherwise the microcomputer system
has no way of knowing how far down the daisy chain the interrupt acknowledge signal IACK
went before it got trapped. So we are back to demanding that external devices in the daisy chain
contain sufficient logic to trap the acknowledge signal when an interrupt is being requested, then
to transmit a device identification code to the microcomputer system. Certainly this logic could be
implemented for a few dollars, but remember a microcomputer does not cost too many dollars
either.

In order to eliminate the cost of external logic required | DAISY CHAINING
to implement a daisy chain, some microcomputer | WITH I/O
manufacturers provide this logic on support devices. | INTERFACE
Consider daisy chain logic on an 1/O interface device; | DEVICES
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Here is one possible Parallel 1/0 Interface device configuration:

Vdd 'S0 Device select
Vss S| > signals
Vgg —3» DO |€>
& D1
->»{ 100 D2 9
. ’ol D3 ;
< 102 D4 .
S 103 D5
. 104 ~ D6
g 105 A7 e
106 l«— I0SEL
-<>»{ 107 PARALLEL L— IORW
->»{ 108 /0 —> IREQC
109 INTERFACE — 1ACK
@ 1010 WITH l«— |REQ
s 0111 INTERRUPT
Q o1z LOGIC
O
= 1013
1014
<1015

In order to acquire the extra pins for needed signals, we have replaced 8 device
select pins (AO - A7 in Figure 5-12) with two pins, SO and S$1. For the device to be
selected, a low signal must be input at 80. A simultaneous low input at S1 will select Port A, A
simultaneous high input at S1 will select Port B.

You can usually choose two address lines and tie them | DEVICE
directly to SO and S1, thus selecting individual Parallet /0 devices | SELECT
without using a lot of external device select logic. This is how you could | LOGIC
use the 8 address lines illustrated in Figure 5-12 to select four Parallel 1/0
devices:

A7 A6 AB A4 A3 A2 Al A0

! 2_? Device 1
SO

S0 Device 2
SO

st Device 3

SO Y Device 4
St



What addresses would be assigned to 1/0 ports A and B of Device 3? You can compute ad-
dresses as follows:

A7 A6 Ab A4 A3 A2 A1 A0

0 1 X 0 0 1 o 1

. 4 + Af+ L Must be | to insure

- 1/0 devices 1, 2 or 4
are not selected

Could be 0 or 1. We
arbitrarily select O

Must be O to select device 3

0 selects Port A
1 selects Port B

Thus 45,4 selects device 3, Port A.
65, selects device 3, Port B.

This device select logic has nothing to do with interrupts — which is the subject
we are currently discussing.

A number of Parallel 1/0 Interface devices with interrupt logic would be used as
follows:

- IREQO _
h ) A
TO 1/0 170 1/0 TO
MORE < Device Device Device » MICROCOMPUTER
DEVICES SYSTEM
) T A T )
- - -
IACK {ACK IACK IACK
IREQ IREQ IREQ
L} ) A
AN i /
/

~ .
*~ External device
interrupt requests =

This is what happens:
1) When one or more external devices request an interrupt, they set their IREQ line “true”.

2)  When one or more Parallel I/O devices receive a “true” IREQ, they pass it on to the CPU via
the common IREQO line.

3) The CPU receives a “true” IREQO input. CPU logic now knows that some device — it does
not know which — is requesting an interrupt.

4) When CPU logic allows the interrupt to be acknowledged it outputs IACK “true”".

5) The first Parallel 1/O device in the daisy chain receives IACK “true”. If it has received IREQ
“true”, it traps the IACK signal, without regard to whether or not it has been selected via the
S0 and S1 select lines. If the first Parallel /O device in the daisy chain has a “false” IREQ in-
put, it passes the IACK signal on to I/0 device 2. The first I/0O device with IREQ input “true”
traps IACK.



6) The I/O device which traps IACK now outputs its interrupt address vector on ﬂlg data bus;
this allows the /O device to be identified. Note that select logic associated with SO and S1is
still not involved. The interrupt request/acknowledge logic has its own select logic — it is
part of the logic which traps IACK or passes it on.

7) Now the interrupt service program takes over. If data is to be input or output, S0 and S1 are
used to select the appropriate }/O dewvice, just as any other program would do.

The Parallel 1/0 with interrupt logic device introduces a very | MULTI-
important concept — putting more than one function on a | FUNCTION
single chip. Parallel 1/0 logic and Interrupt logic have nothing in com- DEVICES
mon. They happen to be on the same chip, so they share the data bus
pins DO - D7.

External logic can request an interrupt via one I/O device; then after the interrupt
has been acknowledged, the external logic can transmit or receive data via 1/O
ports of the same 1/O device, another 1/0 device, or via no 1/O device.

Following an interrupt, there is no reason why you must transfer data via the 1/0 ports of the 1/0
device which trapped IACK.

1/0 logic and interrupt logic happen to share a chip; they have no other connection.

DIRECT MEMORY ACCESS

The shower temperature controlling microcomputer system will spend a ot of its time simply
receiving data from the temperature sensor and storing the data in a RAM buffer.

We have described how interrupts may be used to execute program RECORD whenever the tem-
perature sensor is ready to transmit data. Let us take another, more careful Iooklat this scheme.

Remember the temperature sensor can transmit approximately two temperature readings per
second. To the microcomputer system, this is equivalent to receiving a temperature reading once
every quarter of a million instruction executions — approximately.

A cheap temperature sensor is not going to transmit exactly two temperature read-
ings per second. In fact, there could be considerable time period variations between
temperature transmittals. As a result, we cannot predict, with
any degree of accuracy, the time delay between consecutive] ASYNCHRONOUS
data transmittals from the temperature sensor to the microcom-| EVENTS

puter system. Therefore, data transmittals from the tem-
perature sensor to the microcomputer system constitute asynchronous events:

Readings transmitted by temperature sensor to microprocessor

VA

Microprocessor program execution

Because data transmittals from the temperature sensor to the microcorhputer system are some-
what unpredictable (or asynchronous). program RECORD must be executed every time the tem-
perature sensor transmits a data item. Program RECORD contains the instruction sequence which
will move data from an /O port to a byte in the RAM memory buffer; this instruction sequence
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cannot be part of program ADJUST, since the logic of program ADJUST cannot detect the arrival
of data from a temperature sensor. Any scheme that executes the RECORD instruction
execution sequence at fixed time intervals is bound to miss a large number of the
data transmittals from the temperature sensor. Here is an example:

Readings transmitted by temperature sensor to microcomputer

Higr
M’S‘s?

0 00606 0O®G®OBGO6 6

@ represents normal execution of program ADJUST. ® represents fixed, perodic execution
of the instruction sequence which records data transmitted by the temperature sensor to the
microcomputer system. If transmitted data does not reach the microcomputer system during

it may be missed.

The only safe way of catching all data transmitted by the temperature sensor is to
have the temperature sensor request an interrupt when it is ready to transmit a
data item. In response to the temperature sensor’s interrupt request, the microcomputer system
will execute the data sensing instruction sequence, characterized in the illustration. above
by The illustration must now be modified as follows:

Readings transmitted by temperature sensor to microcomputer

® /® , @ / /
Each time the temperature sensor transmits data to the microcomputer system, it notifies the
CPU by requesting an interrupt. In response to the interrupt request, program logic suspends ex-
ecution of program ADJUST (@) while executing program RECORD (®). Program RECORD

reads the data input by the temperature sensor, then program ADJUST continues executing from
the point of suspension.

Even this method of recording data transmitted by the temperature sensor is not very efficient.
This is what happens when the CPU accepts an interrupt and executes RECORD:

1) The CPU is executing program ADJUST ( @) in the illustration above. When the CPU senses
an interrupt request, it executes some instructions which save the contents of CPU registers
and status; then it executes an instruction to acknowledge the interrupt.

2) Program RECORD (® in the illustration above) is executed. This program contains instruc-
tions which load a memory address into the Data Counter, read data from an /O port into the
Accumulator, then output the data from the Accumulator to the memory word addressed by
the Data Counter.

3) Step 1is reversed. Saved contents of registers and status are restored and program ADJUST
continues execution.

Out of all the instructions that get executed to implement the above three steps, the
only change, each time.the temperature sensor transmits a reading and is re-
executed, is the contents of the Data Counter in Step 2. The contents of the Data
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Counter will be one more than it was last time, and one less than it will be the next time. Fifty
microseconds or more are needed to repetitively process an otherwise predictable and trivial se-
quence of events. Before we can decide whether this is a serious or an inconsequential problem,
we must ask two questions:

1) Are operations like this fairly common, or is this an isolated and speclal situation?

The answer is that it is one of the most common operations performed by a microcomputer.
In fact, not only will a microcomputer spend a great deal of time reading data from an exter-
nal device, it will spend almost as much time routinely transmitting data from RAM buffers to
external devices.

2) if the microcomputer did not spend 50 microseconds every time it input data
from an external device (or output to an external device), what else would it do
with the time?

In many simple applications the answer is nothing, in which case the wasted time is irrele-
vant. But clearly, as a microcomputer application starts to get more complex, the waste of
time starts to become more serious. If it takes 50 microseconds to read a data item from an
external device, and another 50 microseconds to transmit a data item to the same external
device, then one microcomputer system could perform one hundred data transfers per
second -— but there would be no time left to do anything else

We must therefore conclude that there will be a significant number of applications in
which the time wasted processing interrupts will be intolerable.

CYCLE STEALING DIRECT MEMORY ACCESS

Direct memory access (DMA) provides a solution. We will create a new device for our
microcomputer system, and on this device we will place a small amount of CPU-type
logic, dedicated to the sole task of moving data between 1/0 ports (or the data lines
of the External System Bus) and memory.

The DMA device will accomplish its task by suppressing or bypassing CPU logic
while it creates signal sequences that enable the appropriate data transfer.

Given the microcomputer system architecture that has been described in this
chapter, the task of designing a DMA device is really quite straightforward.

Temporarily suppressing CPU logic is easy, since the CPU is | INHIBIT
driven by an external clock signal. If we can stop the clock sig- | CONTROL
nal, we can stop the CPU. Therefore, as illustrated in Figure
5-15, we will add an INHIBIT control line to our External System Bus, and an INHIBIT
control pin at the CPU device.

The INHIBIT signal will normally be high, so that a simple AND-gate within the CPU chip will com-
bine the clock signal with the INHIBIT signal. to generate the internal clock signal which drives
CPU chip logic:

INHIBIT

CD—‘

All the DMA device has to do is set the INHIBIT signal fow in order to suppress timing clock sig-
nals within the CPU chip:

o 1 J 1 1 1

CPU O

INHIBIT

cPUG T 1 i 1 1




Memory devices and Parallel Interface devices have no way of knowing where the control signals
that drive their logic come from. Therefore, the DMA device can take control of the External
System Bus while CPU logic is suppressed.

Consider Figure 5-15 in more detail. The DMA device, as illustrated, contains the
following three registers:

1) An Address register which contains the address of the next memory word to be accessed,
either for a read or a write operation.

2) A Counter. which initially contains the length of the data buffer which is to be filled during a
read operation, or out of which data is to be read during a write operation.

3) A Status register. which identifies the direction of data flow, whether the DMA logic is
currently active or inactive, and various other DMA options. We will look at a few of these
options later.

To the CPU, the registers of the DMA device may appeat as 1/O ports or addressable
memory words. Initially, programmed 1/0 instructions will be used to set values in
the Address, Counter and Status registers. Here is an example:

0080 Address Register
007F Counter Register

03 I Status Register

This simple example specifies that a data buffer, 7F ;5 bytes long and origined at 00804, is to be
filled with data from an external device, using Direct Memory Access.

The Status register is for the moment limited to this simple format:

76543210 Bit Number

—— 1

Unused 0

Data input from external device.
Data output to external device.

I

DMA logic active.

1 =
'0 = DMA logic inactive.

By setting a value of 03¢ in the Status register, data input from an external device is specified,
and DMA logic is activated.

A program must be executed by the CPU to initialize a DMA | DMA
operation. The program will have to load data appropriately into DMA | INITIALIZATION
device registers. There is no other way for data to get into the DMA
device Address. Counter and Status registers

In order to initialize a DMA operation, a program would be executed by the CPU to
perform these steps:

1) Transmit the low order half of the starting address to the DMA device.
2) Transmit the high order half of the starting address to the DMA device.
3)  Transmit the buffer length to the DMA device.

4)  Transmit a control code (03 1. as illustrated above) to the Status register of the DMA device.
The control code must identify the direction of the data transfer and must turn the DMA
device on.

Notice that the DMA device has READ and WRITE control lines.
The WRITE control line will be used by the DMA device to write data into RAM.



The READ control line will be used by the DMA device to output data fro

The CPU can, at any time, read the contents of DMA device
registers. This allows a program to check on how far a DMA operation
has progressed by reading the Address register and/or Counter register

m RAM or ROM.

DMA CAUGHT
ON THE FLY

contents. A program that adjusts its logic to the current level of completisn:of a DMA

operation is said to be catching DMA on the fly.

Of course, an executing program can turn a DMA operation off a#
any time by simply writing new data into the DMA device’'s
Status register. As described above, setting the 1 bit of the Status
register to O would immediately stop any DMA data transfer that was in p

DMA BEING
TURNED OFF

rogress.

What happens after a DMA operation has started? Notice that
external devices are connected directly-to the data lines of the

DMA.
EXECUTION

External Data Bus. In addition, the external device has a DMA
request signal (DMAREQ) which it pulses high to the DMA devic

e. If data is being

read from the external device, the following signal sequence occurs:

o1 1 y b | 1
1
DMAREQ
INHIBIT Q | (@
I e A =
AO-A15 >\© » GEG) K
DMACK ( N N
DMARW -
DO-D7 \ \S(@ (\
WRITE"
late DIMIA Clock e
Cycle

The entire DMA operation occurs-in one clock cycle.
Events occur as follows:

1)

the INHIBIT control signal (
edge of clock pulse 0 to follow f@ above).

As soon as the DMA device senses a high pulse on the DMAREQ line. it immediately lowers
above). The INHIBIT control is kept low until the second rising

2) The CPU will suspend operations for one clock cycle because INHIBIT | FLOATING
keeps the CPU ) line low (@ above). The CPU will also apply high | BUSSES
resistances at its connections to the address and data busses, effec-
tively disconnecting itself from these busses. This is referred to as floating the busses.

3)  The combination of INHIBIT low and ® rising (@above) causes the DMA device to output

the contents of its Address register on the address lines of the External System Bus

(@above). Also the DMA device acknowledges the DMA request by
response control line high (@above).

pulsing the DMACK



5)

6)

The O bit of the. DMA Status register determines whether the DMARW control line will be
high or low. As illustrated above, it is low, indicating to external logic that it must transmit
data to the data lines of the External System Bus. The combination of DMACK high and
DMARW low causes the external device to place its data on the data lines of the External
System Bus (@ above).

The O bit of the DMA Status register also causes the DMA device to output a high on the
WRITE control fine. All RAM interface devices will decode the address on the address lines
and one will find itself selected; on sensing the WRITE control high, the selected RAM inter-
face device will take whatever data is on the data lines of the External System Bus and will
write this data into the addressed memory word. RAM interface logic neither knows nor
cares where data, address and control signals originated. It simply responds to any situation
which activates its internal logic.

As illustrated above, the second rising edge of @ terminates DMA operations. [n reality, some
other scheme would be used, since the one illustrated, though very simple, would cause jit-
ter in the leading edge of CPU §. CPU () goes high only because INHIBIT goes high. TNHBIT
goes high because @ just went high for a second time. Clearly, § going high for a second
time cannot exactly coincide with CPU () going high. because in the middle, INHIBIT going
high had to occur and stabilize:

—

]
bl
CPU 0 :: l_

Thus, as illustrated, the DMA read timing diagram is conceptually accurate but realistically im-
practical.

As soon as the DMA device has output the contents of its Address register to the External Data
Bus, it will increment the contents of the register, so as to address the next word of the RAM data
buffer. Simultaneously the DMA chip will decrement the contents of its Counter register.

Here is the signal sequence for a DMA write operation: DMA WRITE

DMAREQ _l @
S —

AOD-A15
DMACK

DMARW

DO-D7 \ @

TIMING

ot L4 [ S

(@\\L 1
(&S
ragl
DY

CPU O J l @_

T~

27 [

|_—
-_—

READ

DMA Clock
hatt— CycCle —{
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Notice that the DMA write operation differs from the DMA read operation only in
that the DMA device sets the READ control signal high when it places the con-
tents of its Address register on the address lines of the External Data Bus. This
causes the memory module which is selected by the memory address to place the contents of
the addressed memory word on the data lines of the External Data Bus. DMARW, set high by the
DMA chip. causes the external device to read the contents of the data bus.

Once again the DMA device will decrement its Counter register and increment its Address
register, so that it is ready for the next DMA operation.

One of two things may happen when the counter register decrements to zero:

1) The DMA device may signal the fact that the DMA operation

is over by sending an interrupt request to the CPU. This inter-
rupt would be handled according to whatever interrupt processing logic the CPU is using.

2) The DMA device may simply start the whole process over again, by saving the origi-
nat value of the Counter register and Address register, so that it can reload these original
values and allow operations to proceed endlessly. or until stopped by the CPU.

The two options available when the DMA device counts down to zero are illustrated as follows:
First the “end of DMA interrupt’: B
Last DMA
Cycles stolen by DMA stolen cycle

Interrupt request follows

IV AVAVS.
AN

Main program executing
Continue main program execution

“End of DMA”
program

Next consider a DMA device with additional storage registers for the initial address and buffer
length count:

Initial Address Current Address
Initial Count Current Count

Status l

When “Current Count” goes to 0, “Initial Count” is loaded into ““Current Count”’, and “Initial Ad-
dress” is loaded into "Current Address”; Status remains unchanged (unless modified by the CPU),
and the DMA operation starts over, re-accessing the same buffer, from the same beginning.

DMA WITH MULTIPLE EXTERNAL DEVICES

One DMA device can control DMA operations for many external devices. Since a
DMA device does not actually transfer any data, it does not need any 1/O ports
through which external devices communicate with the microcomputer system.
The external devices connect directly to the data lines of the External System Bus. This arrange-
ment is very convenient, since it allows the DMA device to control DMA access for a number of
external devices.
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Many schemes could be devised which allow one DMA device to control DMA access for more
than one external device; Figure 5-16 illustrates just one possibility.

The DMA device illustrated in Figure 5-16 controls DMA access for five external
devices. Each external device has its own DMA request line (DMAREQ1 through
DMAREQ5). Common DMA acknowledge (DMACK) and DMA read-write control
(DMARWI| lines are used by all devices.

There are five sets of registers within the DMA device, one set for each external
device. Each external device, when it is ready to transmit or receive data, indicates this fact by
setting its own DMA request line high. The DMA device logic accesses the correct three data
registers, based on the DMA request received. For example, DMAREQ3 high identifies Address
3. Counter 3 and Status 3 as the registers containing the data to be used this time.

When the multidevice DMA device illustrated in Figure 5-16 steals a cycle and
transfers a data word via DMA, the signal sequence is identical to that which we
have already described for a single external device. However, external devices in
Figure 5-16 must contain their own select logic. In other words, a device which raises its
DMA request line must be the only device to respond to DMACK, DMARW and the External Data
Bus: no other device attached to the multidevice DMA device must respond to these lines. It is
the responsibility of the external device, not the multidevice DMA device, to ensure that only one
external device considers itself selected at any time.

So long as only one external device considers itself selected for DMA at any time,
then there is no possibility of confusion in DMA data transfers. Memory modules
merely respond to address and control signals output by the DMA device. Memory modules
neither know nor care where this information had its origin. Only the selected external device is
active at the other end of the External System Bus, so the two ends of the data transfer are clearly
defined.

Let us consider an example in detail.

External device 2 is ready for another data access, so it raises DMAREQ2 high:

iNFIBIT  (to steal cycles)
IREQ End-of-DMA
IACK interrupt
DMACK
DMARW
DMAREQbS
| DMAREQ4
DMAREQ3
DMAREQ?2
| DMAREQ1
yy \
External External External
Device 1 Device 2 Device 3.

L2 A vy



The first thing DMA device logic will do is check the status register associated with DMAREQ2, in
this case, register Status 2. If the enable bit {bit 0) is 0, DMA device logic will ignore the DMA re-
quest. Since DMAREQ?2 is a pulse signal, it will go away. If the enable bit is 1, DMA device logic
will acknowledge the interrupt on DMACK and steal a CPU cycle by lowering INHIBIT:

Vad 00
VSS D1
Vog M Address 1 D2
:O ::::'" ! —g: 1a to or from DMA chip registers
A1 1} Address 2 [0
A2 J] Counter 2 D6
A3 Nswmws2 [ 1 F1l07
w >
R
1 BT (o steal cyctes)
[ _a./REQ  End-ot DMA
- IACK nterrupt
A9
1 DMAI
Alul Address 5
A11 HiCounter & ‘mﬁ
A2 |{suus 5 B e
——
- RMAREQD
A3
T L1 _omaeeaz
A5 DMAREQ1

1
External Externat
Device 1 Device 2

For the upcoming DMA operation, only external device 2 can participate at the external end of
the data transfer.

DMAREQ2 causes the contents of Address register 2 1o be output at the address pins: -

vad | 0o
Vs 01
| Vag | Address 1] |02 |
Too— g‘:“::: ! ﬁ a 10 or from DMA chip registers
TT’} Address 2 | { 05
a2 | | [Couner2 H [06 ]
a3 || [Sewsz |{[07]
[ad]| [Aodress3] | Fw f—
28 1| (Coumter3 1L R I gnm (1 stealcuces)
To Address{ | A8 | Status 3 "‘—_’IREO End-of-OMA
lines of A7 Address 4 b
én;:;vgzls 1 -A_?. Counter 4 : L ACK ntemupt oAk
A9 Statys 4
-[at0] | [Acdress] ([} DMARW
a7 | [Coumters] || Jau-2MAREQS
Tl? Status 5 [ DMAREQ4
sl DMAREQ3
3oy “H—] _ BMAREQ2
Ttask 1 omareat

Extemal External
Device 1 Device 2

DMA device logic will decrement the contents of Counter 2 and increment the contents of Ad-
dress 2.

Since DMAREQ? identifies Address 2 as the DMA register containing the required memory ad-
dress, no confusion can result from the fact that four other addresses, in four other address
registers, are present.

544



DMAREQ2 also identifies Status 2 as the Status register controlling current operations. The W, R
and DMARW control lines are set based on the contents of Status 2:

Vad [0}
| vSs] D1

Vag| [Adoress1] |DZ]

0 Counter 1 03

201 Swatos 1 'E— ata 1o or from DMA chip registers
_T_Il ‘adoress 2] | 05 |

72| [Cowmerz]| [o6]

3| [Saws2 ‘I 07
A1) [Address 3| |Ewt—
251 | Counter 3 [ RHBT 1o sieal cycies)

a6 fsawsd L oen endofoma

AT Address 4

A8 Counter & _"_lACK interrupt

A9 Status 4 DYIACK
[210] [Adaress s DMARNY,

A11|  [Counters LDMMTE%
(72| [sawss ][] EMA:ECO)g

A1
o DMAREQ?
e DMAREQ

] y

External External
Device 1 Device 2
A data transfer now occurs between the memory word addressed by Address 2 and external

device 2. Signal sequences associated with the data transfer are exactly as described for the
single external device DMA chip.

SIMULTANEOUS DMA

Observe that cycle stealing DMA really involves nothing more than reproducing a limited amount
of the CPU logic on a DMA device. A DMA device may be likened to a CPU which is capa-
ble of executing just two instructions:

1) Transfer data from an external device to memory.
2) Transfer data from memory to an external device.

Because of the very limited number of operations which the DMA device can perform, nearly all
of the time-consuming sequences associated with CPU operations (for example the instruction
fetch) can be eliminated.

. But we can take DMA logic a step further. By duplicating part of the External System

Bus, we can eliminate the need to steal cycles from the CPU. Look again at the tim-
ing diagram for a memory read operation:

|
|
|
A0 to A15 * RO R

READ

Instruction : Data |
Fetch | Fetch i
Memory Read |
Instruction '

DO to D7




VINQ SNOBUBYNWIS U] Pasn SLied 10AU0) pue ssaippy ‘Bleq /|-G ainbig

saul|
ssarppy {1 Y N
sng
saui| eleg >
e~ Z o
|0nu0) * = E =
= g
= = >
; Z I
Z ! % = E=N= S
30IA3Q 301A30 = £ 3
VNEILX3 TYNHILX3 m \ 3
g ERNATETIY, e o N
jonu0) = = Ve m ] fdd w VY =
VNG * W 5 =
syied |onu0) B3 | m ] = w
suteg ssappy (T S =
siped eleg £ ERe m
saul )
sy { ST TN A T
, saulj eled m X = ﬁ_\ M”mm_o
saul| [eusaIxg
_o:ccoﬂ

5-46



Notice that even though the External System Bus is constantly busy, neither
memory nor external devices will be busy during the ® high portion of instruction
cycles. These periods, shaded above, represent the time required by the CPU’s
Control Unit to generate appropriate control signals.

By creating a second External System Bus, DMA logic can access memory modules
while the CPU is not doing so. This is illustrated in Figure 5-17.

External devices will be connected to the data lines of the DMA System Bus, as shown in Figure
5-17. for all DMA data transfers. If the external devices also access the microcomputer system
using programmed [/O, then there must be additional connections to the data lines of the Exter-
nal System Bus; these additional connections are not shown in Figure 5-17.

At the memory modules, the same memory and address pins | TRI-STATE
must communicate with two busses and that will require some form | BUFFER

of T-junction. This T-junction is referred to as a “tri-state” buffer. A tri-
state buffer, is, in effect, nothing but a multiple signal T-junction:

TTO Bus AT

TRI-STATE
BUFFER

{To Bus BL

SIMULTANEOUS VERSUS CYCLE STEALING DMA

What about the economics of Simultaneous DMA? We must pay for another Ex-
ternal Data Bus and a number of tri-state buffers. What we buy is a little
time: one clock cycle for every byte of data transferred.

To Device

In reality, the extra cost for the tri-state buffer is very small; in fact, it is not inconceivable that
memory modules will be provided with tri-state buffers built into them. We are therefore talking
about a very small additional expense for a very small performance improvement.

A microcomputer designer is therefore more likely to select one DMA method or the other based
upon which method is best suited to the architecture of the microcomputer system.

THE EXTERNAL SYSTEM BUS

The signals on the External System Bus, as illustrated throughout this chapter. do not define a
standard configuration to which all microcomputers must conform.

The External System Bus represents one of the most varying features of any
microcomputer system. Indeed. the only constant feature you will find from bus to bus is the
presence of eight data lines (for 8-bit microcomputers). Most microcomputer systems will also
have 16 address lines.

The greatest variation is seen in the control signals generated by the CPU.
Basically there are two philosophical extremes. One extreme calls for a complex
set of control signals to which other devices passively respond. The other ex-
treme calls for elementary control signals which must be interpreted by devices
that contain a considerable amount of internal chip logic.

Consider first the CPU that totally dorninates a microcomputer system. Devices that interface to
this CPU will not receive any clock signal inputs. Instead they will receive numerous control sig-
nals which identify events on the Data Bus in detail. The National Semiconductor and Signetics
microcomputers are the best examples of this philosophy.



The MCS6500 represents the other extreme. This microcomputer outputs just one control signal
to identify either data input or output. All devices that support the MCSB8500 CPU receive this
controf signal. plus the system clock signal. Devices contain internal logic to decode this com-
bination of two signals according to the rules of the MCS6500 microcomputer system.

The philosophy behind National Semiconductor and Signetics type microcomputers is that no
special devices are needed to support the CPU. By having a very complete set of control signals,
standard off-the-shelf logic can be used.

The philosophy of microcomputers with very elementary sets of control signals is that since it
costs virtually nothing to add extra logic to an LSI chip. you are far better off generating devices
that support the CPU in a very precisely defined way.

SERIAL INPUT/OUTPUT

Data is transferred over telephone lines serially. There are also some slow /O
devices, such as the common teletype and magnetic tape cassettes, which
transmit and receive data serially. If a CPU is to transmit or receive serial data,
then it must have interface logic capable of converting serial data to parallel data,
or parallel data to serial data:

(@]
(@]
o
o
o
o

10110101110101
[

]
i

1

Y

Q=0 = = OO0
- OO0 = -0

LS L0020 = — —

These are the steps via which data is transferred between a telephone line and a
microcomputer system:

Telephone 2| semar | | Mmicro-
Line MODEM INTERFACE COMPUTER

A modem is a device which can transiate telephone line signals

into digital logic levels, or digital logic levels into telephone line

signals. Some microcomputer manufacturers provide modems as a single logic device, but we
do not consider the modem to be part of the microcomputer system: therefore modems are
not described in this book.

A magnetic cassette unit, or teletype, or any other serial device can connect
directly to the serial interface:

SE'?(I;\L ‘ SERIAL L MICRO-
DEVICE INTERFACE COMPUTER
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IDENTIFYING SERIAL DATA BITS

The _unique property of a serial data stream is that the data is transmitted and
received as a single signal, via single device pins:

Transmitting Receiving
pin pin

Receiving
Transmitting Device
Device
Y
Serial
Data
Signal

How is the receiving device to interpret a serial signal Like any other digital signal, the
data signal can have a “high” level { + 5v) representing the digit 1. or a “low’" level (Ov) represent-
ing the digit O.

Consider the binary data sequence: 011100100. This is its serial data signal
representation:

| [ I | 1
Serial Data: | ' [
(. I 1
Interpretation: ¥ 5 14 1 4 tylgltgltyrgryp

Whereas it is easy for you to look at the senal data signal and interpret it | CLOCK
within the vertical broken lines, the recewing device will require more | SIGNAL
tangible evidence of data bit boundaries. We will use a clock signal
to identify the instant at which the receiving device must interpret the data

signal:

Clock Signal:

Senal Data } | I ]

interpretation: 0 1 1 1 0 0 1 0 0

As illustrated above, the falling edge of the clock signal identifies the instant at which the serat
data signal must be sampled. We could just as easily clock on the rising edge of the signal:

Clock Signat:
Serial Data |- | | l |
Interpretation: 0 1 1 1 0 0 1 0 0

A serial data signal must be created by the transmitung device before it can be interpreted by the
receiving device. Let us look into the implications of this simple necessity
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If the receiving device uses a clock to interpret the serial data signal, then t[\e
transmitting device must use a clock with the same frequency to create the serial

data signal:
Transmitting
Clock Signal:

Serial Data:

Receiving
Clock Signal:
Interpretation: o 1 1 0 0 1 0

The transmitting and receiving clock signals cannot be identical; this is because in reality, it takes
a finite time for a signal to change state.

Now it makes figures easy to follow if signal transitions are drawn as clean square waves:

But in reality. every signal that changes state requires a finite settling time: | SIGNAL
SETTLING
TIME

1 Settling
Time

Look at what happens if you use the same signal transition to transmit and receive serial data:

Single Clock D )
Signal:

Serial Data:

A 0" will be received

when a "1" was in A 17 will be received
the process of being when a “0" was in the

transmitted process of being
transmitted



We conclude that the transmitting and receiving clock sig- | SERIAL DATA

nals, while they have a great deal in common. cannot be a single | TRANSMITTING
signal subject to identical interpretation. The transmitting | CLOCK SIGNAL
clock signal will identify the duration of one binary digit:

Transmitting
Clock Signal:

Serial Data:

|
|
J

L During this time interval

the serial data signal represents
a single binary digit. The
illustration happens to show a
value of "1”, occurring
between two "0 digits.

At some point within the single digit time interval a receive clock sig- |SERIAL DATA

nal will identify the serial data signal level: RECEIVING
CLOCK SIGNAL

Transmitting b
Clock Signal:

Serial Data:

Receiving b b b
Clock Signal:

Interpretation: 0 1 0

The illustration above shows the transmitting clock signal active on its trailing edge, whereas the
receiving clock signal is active on its leading edge; there is nothing significant in this use of signal
edges.

The receiving device must wait for the Serial Data signal to | SIGNAL
settle, presuming it has changed state, before trying to read |SETTLING
the signal level. A signal's settling delay is a characteristic of the DELAY




transmitting device; the length of this delay is given by the manufacturer’s
device data sheet. Here is an illustration of settling delay:

Transmitting
Clock Signal:

~

Serial Data:

] | ,
Interpretation: 0 M T y 0

Settling Delays

We can use a single clock signal to transmit and receive, providing we transmit on
the trailing edge of a clock pulse, and receive on the leading edge of the next
clock pulse:

A single serial

digit time interval

Single
Clock Signal:

Serial Data:

1 F
Interpretation: 1 \ T /
Settling Delays

Look carefully at how the transmitted signal level is received:

o

End of digit time

Start of interval and start

digit time of next digit time
interval interval

{

Single ‘ A)
Clock Signal P\
Serial data —&\;

f Read signal level

Settling delay shortly before end
of digit time
interval




The time interval during which the Serial Data signal represents a single | BAUD
binary digit is directly related 10 the speed at which data is being transmit- | RATE
ted. Suppose 110 digits per second are being transmitted: this is a com-
mon transmission speed. Each senal digit will then endure for:

1000000 = 9091 microseconds
110

However, the duration of a digit in.a seral data stream 1s not the way in which serial data transfers
are measured; instead, we measure ‘‘bits per second’’, and refer to this number as the
BAUD RATE. For example, if 110 digits per second are transmitted, this is equivalent 10 a baud
rate of 110

Our microcomputer system already has a clock signal, used to time in- CLOCK
struction execution within the CPU. Do not confuse the microcom- | SIGNALS
puter system clock with the serial data clock; the only thing
these two signals have in common s that they are both clock signals. The serial data clock
signal may or may not be derived from the microcomputer system clock.

From a microcomputer user’s point of view, speed is the most striking difference between the
microcomputer system clock and the serial data clock. A typical microcomputer system clock may
have a penod of 500 nanoseconds (2 MHz) whereas serial data transfer rates typically range from
between 110 and 9600 Baud 110 Hz to 9.6 KHz. In other words, the fastest serial data transfer
rate is approximately 200 times slower than a typical microcomputer CPU clock.

The serial 1/0 clock does not necessarily have to pulse at ex- | SERIAL x 1
actly the baud rate, although frequently it does: CLOCK SIGNAL

Single /0 b § q
Clock Signal: S,_
| ¥
0

Serial Data:

T |

Interpretation:

It is quite common for the clock rate to be 16 times the baud |SERIAL x 16
rate: CLOCK SIGNAL

SerialData 15 0 1 2 3 4 5 6 7 8 910111213 14 15 0 1 2 3
Clock Signal

Serial Data: | T IE
Interpretation: 1
64 times the baud rate is also a frequent option: SERIAL x 64

CLOCK SIGNAL

Serial Data
Clock 616263 0 1 2 3132336263 0 1 2 3132336263 0 1

Data:

i
Interpretation: O

o ﬂ”_ﬂ EFT Tﬁ“”ﬂ“ ““Jf“m



The reason for having x16 and x64 clocks is to get as close as possible to the
center of a single digit time interval when sampling the serial data signal.

The fact that serial data needs a companion clock signal does not necessarily
mean that all serial I/O requires two signal lines. The accompanying clock signal does
not actually have to be transmitted on a companion wire. If you set up a serial data communica-
tions interface. with a predefined baud rate, then receiving device logic does not have to
receive a companion clock signal. Receiving device logic can create its own, jocal clock sig-

nal, synchronizing it with a transition in the serial data line:

Synchronize here

Serial Data
Clock Signal:

Serial Data:

Interpretation:

Special synchronizing O digit

In the illustration above, the Serial Data signal is permanently high when

not transmitting data; this is often referred to as Marking.

Note that when using a x 16 or x64 clock signal, the receive clock can be one or two pulses out of
phase with the transmit clock and no harm will be done. The receive sampling point will simply
be skewed a little off center

If a single synchronization binary digit is insufficient, how about a synchronizing digit pat-
tern?

We can. for example, define a special synchronization serial data bit sequence and set up rules
which state that every serial data stream must be preceded by this synchronization pattern:

Receiving clock synchronization

Receiving
Clock Signal:
Serial Data: | J 1 I
Interpretation: 0 1 1 0 1 0 0 1 Synchronization

bit pattern

The synchronization pattern illustrated above does exist. in the | SYNC
form illustrated; and is referred to a SYNC character. CHARACTER

Specifying that a senal data stream must use synchronization digits or PROTOCOL
characters is just the first of many rules that we must impose on {IN SERIAL
serial data streams in order to ensure that the receiving device | DATA
correctly interprets the transmitted data. This set of rules is
referred to as ‘‘communications protocol’’.

Every serial 1/0 data link must have a communications protocol, since the senal data must be
completely self-defining. Unlike parallel 1/0, the serial data line cannot always be accompanied by
control lines which tell the receiving device how to interpret the data at any instant.

TELEPHONE LINES

When dealing specifically with telephone lines, consider the fact that the
transmitting and receiving devices may continuously switch roles, as happens in any
voice telephone conversation. While talking, you are the transmitter; while listening. you are the
receiver.
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Similarly, when transmitgng serial data over telephone lines two-way communication will almost
always be required.

If a single telephone line is used to transmit data in both direc- | HALF
tions then communication is said to be half duplex. DUPLEX

If two telephone lines connect the transmitting and receiving | FULL
devices, with each line being dedicated to data transfer in one direction | DUPLEX
only, then communication is said to be full duplex.

The advantage of full duplex telephone communication is that data transfer in both directions can
proceed in parallel

ERROR DETECTION

Whether serial data is being transmitted over telephone lines, or directly between a transmitting
and a receiving device, we must check for errors in transmission.

If spurious data signals find their way into the serial data line, the receiving device must have
some means of determining that errors have crept into the data

" At a primitive level, the parity bit does this job. Since the parity bit has | PARITY
been set or reset, to ensure that the total number of 1 bits in | BIT
the data unit is either odd or even, then an odd number of error
bits will be detected. Here are some examples, assuming odd parity; In all illustrations, the
parity bit is shaded and error bits are starred:

Transmitted Received

101101108 109101 1068 Even parity, error detected
10110110¢ 119101 108 Qdd parity, no error-detected
100101108 100101108 Even parity, error detected

10010110% 0110100 1 QOdd parity. no error detected

XK KKK KW

An additional technique used to check for errors in transmis- | CYCLIC

sion is to append a ‘‘cyclic redundancy character’’ at the end | REDUNDANCY
of data stream segments. The cyclic redundancy character is a num- | CHARACTER
ber created by dividing the transmitted data stream by a fixed polynomial.
Here is one commonly used 17 binary digit divisor:

11000000000000101

The result of dividing this divisor into the transmitted data stream, treating the transmitted data
stream as one continuous binary number, becomes the Cyclic Redundancy Character. The receiv-
ing device multiplies the received data stream by the Cyclic Redundancy Character. If the resultis
not the standard divisor, then an error must exist

‘The Cyclic Redundancy Character is just one rather simple method used to track down errors in
transnmission. Very camplex methods have been devised not only to track down errors, but also to
determine exactly what the error is — so that it can be corrected. Entire books have been written
on the subject of error detection and correction, therefore we are not going to discuss the subject
any further.

SERIAL INPUT/OUTPUT PROTOCOL

Let us now tie together the miscellaneous necessities of serial data transfer which have been de-
scribed thus far.

Generally stated, serial data communications protocol can be divided into syn-
chronous and asynchronous categories. You will find protocol easier to understand if you
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approach synchronous and asynchronous data communications as two separate and distinct en-
tittes — not minor variations of a single concept.

SYNCHRONOUS SERIAL DATA TRANSFER

The principal characteristics of synchronous, serial data transfer is that the data
conforms exactly to a clock signal. Having once established a serial data transfer baud rate,
the transmitting device MUST transmit a data bit at every clock pulse; therefore the receiving
device knows exactly how to interpret the serial data signal:

|
|
Senal Data: :

O e | e —
O e e | —

i
|
|
|
I
1

Interpretation: 0

For example, if 300 baud serial synchronous data transfer has been specified, then the receiving
device can slice the serial data signal into 3333 microsecond segments, interpreting each seg-
ment as a single binary digit.

We earlier llustrated clock signals with frequencies 1, 16 or 64 times the baud rate. x16 and x64
clock signals could be used with synchronous serial /0. but in practice they are not.

How is the receiving device to know the bounds of each data unit?
Sernial data stream: ---011001011101100010111--

Where are the byte boundaries?

Clearly our synchronous protocol must define the tength of individual data units — and must
provide the receiving device with some way to synchronize on data unit boundaries. The SYNC
character is used for this purpose. Every synchronous data stream begins with either
one or two SYNC characters:

SYNC 1 SYNC 2
—— e et~
01101001011010011011...

First character of data
stream, and data unit boundary.

The data unit in a synchronous, serial data stream usually consists of data bits
without parity; but a parity bit may be present. Here is an example of a 9-bit data
unit; eight data bits and a parity bit:

XXXXXXXXP
e ——

I L Parity Bit
Eight Data Bits

Either odd or even parity may be specified

Eight data bits need not always be transmitted; options allow 5, 6, 7 or 8 of the
data bits to be meaningful. If less than eight data bits are meaningful, then the balance of
high order bits are ignored. Here is an example of a data unit in which only 6 data bits are signifi-

cant: XXXXXXP

T_ Parity Bit (if present)

Six Data Bits
Two high order bits are ignored
and not transmitted



While waiting for synchronous, serial data to start arriving, | SERIAL

a receiving device will enter a “‘hunt’* mode, during which it SYNCHRONOUS
continuously scans the serial data input trying to match an incoming HUNT MODE
serial data stream with the standard Sync pattern. If your protocol calls
for one Sync character, then the receiving device will start interpreting data as soon as it has
matched a single Sync pattern. More frequently, protocol will call for two initial Sync characters, in
which case the receiving device will not start decoding data until it has matched two sequential
Sync characters.

We have already stated that synchronous data transmission requires the transmit-
ting device to continuously send data. What if the transmitting device does not have data
ready to send? Under these circumstances the transmitting device will pad with Sync
characters until the next real character is ready to transmit. To illustrate this concept,
consider an operator entering data at a keyboard; the keyboard transmits data using very
slow, synchronous serial 1/0. The operator has to key enter the message:

GoodpmorningpMr pSmith.

b represents a space character.
Since the operator will be entering data at variable speed, keyboard serial data transmission will
insert a Sync character whenever the operator is slow; thus the message may be transmitted as
follows:

GogogddgpggmoprngingpgggMprss. gpggSmpgitns
# represents Sync characters. '
When the receiving device decodes a Sync character in the middle of a message, it will ignore

the character, but it will remain in synchronization with the serial data stream, ready to interpret
the next character.

Assuming that the message illustrated above is being-transmitted in ASCIl code, consider this
portion of the message: M.

The binary parallel and synchronous serial equivalent may be illustrated as follows:

Sync Sync Sync
Char 1 Char 2 Char 3 Char 3 Char 4 Char 5
P e W S N N
---010011011011010011011100101011010011011010011001011101--~
N N —— N’
M r

9 digit characters including an odd parity bit are illustrated.

If ASCII characters only are being transmitted, 8-digit characters, including 7 data
digits and a parity digit may be used.

SYNCHRONOUS TELEPHONE PROTOCOL

Now in a real synchronous, serial data stream, when communicating via telephone
lines, some additional information must be present.

First of all, we need 1o consider the needs of two-way communication.

If a serial data communication link is to work, the transmitting | SERIAL DATA
device must be able to transmit commands and receive HANDSHAKING
responses in dialog with the receiving device; this is the BISYNC

only way of insuring that the transmitting device is ready PROTOCOL

for the transmitted data—or to tell the transmitting
device that it must stop transmitting and start receiving. Following the Sync characters
that begin and end any data stream, therefore, there will usually be some well defined control




characters which must be transmitted in both directions. This dialog is referred to as handshaking
protocol. For example, Standard IBM 2770 Bisync protocol uses this handshaking sequence:

1

Transmitter Receiver

Wishing to transmit, send out an
character to determine
whether the receiver is ready to
receive.

Assuming that it is ready. the

e e mem ene— = receiver sends back aSIg—
nifying that it received the enquiry
and is ready to receive.

The transmitter now sends a
character saying that it i1s
text. It then sends 3
followed by a character that: (1)
indicates the of the block. and
(2) asks the receiver to check the
following transmission cyclical re-
dundancy check characters and let
the transmitter know if there are any
transmission errors.

1f no errors have been detected, the
receiver sends back a different

’—-—-—————————— -—-lhlsonesavs, “Yes, 1

rlyvyy

Es ECC E
N TDATATRR TDATATRR [¢]
Q| x BCC XCC T

|
I
I
I
I
I
|
I
|
I
|
|
I
I
I
v

0

1

|
[
I
l
I

{Characters
sent from

Recewer) T acknowledging]character that says,

[’m.—o

received your block, checked it

Characters found it OK. and now | have
sent from received an odd-number of text
Transmitter

biocks from you™

The transmitter sends its usualstart-

xt| character, followed by the
tJif this is the last block of data to

be transmitted, an {end-of-text

character is sent, followed by cycli-

cal redundancyfcheck characters

Assuming that the receiver found
no errors, it sends back an

I "Your last block was received OK
and now | have received an even

number of text blocks.”

Upon receiving this response and
having nothing more to send, the
transmitter simply sends ars_pm
end-of-transmission character|f
the line

Recognizing the special  end-of-
transmission character, the receiver
also disconnects
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Within the telephone communications sequence, the DATA will be transmitted using syn-
chronous rules previously described:

| I I Additional requirements of telephone
| Strictly synchronous

serial data

O IO
xX -4 W
o
>
=
>
X =4 M
OxIJO
O DO
—~ QO m

ASYNCHRONOUS SERIAL DATA TRANSFER

When serial data is transferred asynchronously, the transmitting device only
transmits a character when it has a character ready to transmit. in between
characters a continuous ‘‘break’’ signal, usually a high level, is output:

Serial Data: llll--ll llll--|lll

T —————

K— Data -——/f

Every data unit in an asynchronous data stream must carry its | FRAMING
own synchronization information. An asynchronous data unit START BIT
is therefore “‘framed’’ by a single Start bit, and one, one and a

half, or two Stop bits: STOP BIT
A single asynchronous

serial data unit

D e
OxxxxxxxxP 11

ﬂrw’ -{__ Stop bitls)

Parity bit
L Data bits
tart bit /

Having a single O start bit is universally accepted in the microcomputer world.

Framing bits

There is a similarity between the synchronous data stream’s SYNC characters and the framing bits
of an asynchronous data stream.

SYNC characters frame a block of synchronous data characters. Start and stop bits frame every
data character in an asynchronous data stream.

Of the eight data bits, 5, 6, 7 or 8 may be meaningful, as was the case with syn-
chronous serial data. If less than eight data bits are meaningful, the leftmost. high-order bits are
ignored. For example. if your protocol stipulates that there will only be five data bits in each
transmitted asynchronous word, then the receiving device will only receive five data bits, and will
interpret each received word as follows:

A single asynchronous

serial data unit
w
XXXXXP 11

’T_ Stop bit(s)
Parity bit
Data bits

lgnore these bits. They are not transmitted.
Start bit




Thus a 9-bit data unit is actually transmitted.

The parity bit is always present. Either odd or even parity may be | PARITY
specified. BIT

1's are always used for stop bits. Most frequently there will be two STOP
stop bits; one stop bit is sometimes specified. If you have two stop bits, BITS
then every serial 8-bit data word will contain twelve bits:

OxxxxxxxxP11
s

(———

A t-[_ 2 Stop bits
1 Parity bit

8 Data bits
_1___ Start bit

1

If you have one stop bit, then every serial 8-bit data word will consist of eleven bits.

N

Teletypes use one start bit, seven data bits, a parity bit and two stop | TELETYPE
bits —- for a total of 11 bits per character. Teletypes operate at a standard | SERIAL
10 characters per second, which translates into 110 Baud. DATA FORMAT

- Some transmission protocols specify one and a half stop bits. The stop bit width is one
and one half times the normal bit width.

Consider even parity, asynchronous serial data using two stop bits, with 6 data bits in each data
unit. This is how a sequence of parallel data will be converted into a serial data stream:

/

---0110100111001101011100101101110100111011

OO0 =20 - —
o -0 = —

O—-—-0-—-0
NN I I

If synchronous serial data communications is occurring over telephone lines, then
some form of handshaking protocol, as illustrated for synchronous telephone com-
munications, is going to be required. In fact. there is nothing to prevent the identical
handshaking protocol from being used. Thig’ protocol is simply a method of transmitting informa-
tion between two devices via a single telephone line.

Notice that during asynchronous data transfer the receiving device has an | FRAMING
additional means of checking for transmission errors. The first binary digit | ERROR

of every data unit must be a O representing the start bit; the last two bin-
ary digits of the data unit must both be 1 representing the stop bits. If the receiving device
does not detect appropriate start and stop bits for any data unit in an
asynchronous serial data stream, then it will report a framing error.

A SERIAL 1/0 COMMUNICATIONS DEVICE
Let us now look at the requirements for a serial 1/0 interface device.

DUAL IN-LINE PACKAGE SIZE

First of all, how big should the DIP be? We have been using 40-pin DIPs indiscriminately for all of
our devices. Is there some rationale which leads us to a larger or smaller package
size, or are we better off simply standardizing on the 40-pin DIP, even if half the
pins remain unused?




The answer is that all other things remaining equal, we would like to use DIPs with as few pins as
possible. Bigger DIPs cost more to build and they use up more space on a printed circuit card.
Using a 40-pin DIP, where a smaller one would do, can have a snowballing cost effect:  Fewer
DIPs on a PC card can mean more PC cards. More PC cards can mean a larger backplane. a bigger
power supply and a more expensive enclosure.

On the other hand, it makes no economic sense to have a bewildering variety of DIP sizes simply
to insure that no DIP ever wastes a pin. For example, you are better off using a standard 40-pin
DIP with two unused pins, rather than building an odd-ball 38-pin product.

For our serial /O communications device we are going to select a 28-pin DIP since
this is one of the standard package sizes. We can get away with this smaller number of pins
because our serial 1/O ports are going to shrink to 1 pin per port.

LOGIC DISTRIBUTION

Synchronous and asynchronous serial 1/0 logic is going to share a single chip. The
two sets of logic have enough in common for this to make a lot of sense.

Our serial communications 1/0 device may be visualized as having three inter-
faces: One for the microcomputer CPU and one each external asynchronous and
synchronous serial 1/0. Each interface will, as usual, have data lines and control
signals. For the serial 1/0 interface, control signals can be grouped into general
controls and modem controls. General controls apply to any external logic,
whereas modem controls meet the specific needs . of industry standard
modems — which does not prevent you from using modem controls for other ex-
ternal logic if you can.

THE CPU — SERIAL I/0 DEVICE INTERFACE

Since the CPU interface is common to synchronous and asynchronous 1/0, this is
where we will begin.

The serial 1/0 device is going to communicate in parallel with the CPU via the external system
bus data lines. We must therefore provide 8 data pins, backed up by a data bus
buffer:

DO
Y
External L2
System Bus D3

D4
Data Lines 05

D6
D7

Data Bus
Buffer

JLLEEEITTITT

Other signals required by the CPU interface are no different from those we included in the
paraliel 1/0 interface device. Specifically. these are IOSEL and IORW. |OSEL identifies an 1/0
operation in progress and IORW selects either a ‘read to" the CPU or a ‘write from’ the CPU.



Add clock, power and ground, and our serial |/O interface device looks like this:

00 |

D1
External D2

System Bus o3

D4
Data Lines =

D6
D7

Data Bus
Buffer

IOSEL —>
IORW =¥

[TIITITTITTd

THE SERIAL 1/O INTERFACE

We are going to use separate pins to transmit and receive serial data. Some devices
use a single. bidirectional data pin.

‘ Since we have separate transmit and receive data pins, we will also need to input separate
transmit and receive clock signals. Both clock signals are input by external logic to control
the rate at which data is being transmitted or received:

[T T
 E—

Receive Clock:

u
W

-~

~
N
\
N

o}
=]

lw)

o
]

External
System Bus
Data Lines

Data Buffer

Data Bus
—|=l ==
SEEERNRERENEN

Buffer
Receive

DEEEE

‘, |
/ l

<— Receive senal data g’ /
l— Receve Clock uge
—» Transmit senal data o

[ Transmit ClOCK g =

IOSEL =
IORW =—3~

<
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Transmit
Data Buffer
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<

\

]

S

Transmit Clock: r_-l J_l ﬂ _ e //
Transmit Data: —r I ‘//




I external logic uses the same transmit and receive clock signal, you can | CLOCK

derive both signals from the system clock ® or from any other clock logic. { SIGNALS
In any case these two clock signals are going to control the
serial data baud rate. Baud rate will not be.determmed by logic internal to the serial 1/0 inter-
face device and device logic will not generate or output clock signals.

Consider a synchronous data stream where every Receive Clock signal ris- SERIAL
ing edge will strobe the Receive Data signal level, as a binary digit, into the | DATA
Receive Data buffer. Whenever the receive data buffer contains | INPUT
eight binary digits, its contents will be transferred to the Data
Bus buffer. Here is an illustration of serial data entry:

00 D0 Do DO
o | [ B O Bl
D2 02 52 02 ]
/] |2 1 [e] gl 1 [ gl = gl
o] |2 o SMIE] [ sMId g M
[o5 | 5 ] 05| -] =l 1] o5 | S
i —H B 1 1 [ ]
[o7 | i O . T I R T .
— g Y - -
Vad RO Vdd RD Vdd RD Vdd RD
Vgg T} Vag __Lq—l- Vag 70 b—do f7os | ] e
() TC - [0 8 o TChe4- (5] TC e
\ ~ ——

- © 0 (0 |0

Data Clock: ﬂ_‘{ rl-—f-l_

Receive

Serial Data: | | L
Interpretation: O 1 1 0 0 1 1 1
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=
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10011100

11001110
B

B E

00111000

01100111

g2
HREEGEEEREE

L]
[TTTTTTITT

BEE
EHEE
=
e
4
l=i al
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The Receive Data buffer is now empty. so the next Receive Data bit will start the loading process
all over again.

Every Transmit Clock pulse trailing edge will strobe out a bit from the | SERIAL
Transmit Data buffer. The eight Transmit Data buffer bits will be DATA
output in ascending order starting with bit 0. As soon as bit 7 has | OUTPUT
been output. the Transmit Data buffer will be considered empty. so the
Data Bus buffer contents will be loaded into the Transmit Data buffer. to continue the sernal
transmit process. Here is an illustration of senal data output:

o0 o0 00 o0} —
D1 D1 D1 D1
el e W o e o -
- - 0 B o =
] |z = = = = o] -
D6 06 Db D6
(07 | | o7 1 D7 %7—1 L‘
o7 | = | Ex E 107} L]
[Vad E._ vag D |— {Vad] fo— [Va] D
[vss ] = RC | [Vse [RC| [Vss | | RC pa— fVss _R—ijﬂ—
Vag 7O |=re= [Voo ] e [Vaa]| (75 e [Voo D
[® | e[ <] [ ] ?c'-*- > 7]
f
|
o)
|
|
|
Serial
Data Clock:
Transmit
Serial Data: |
Interpretation: 1 1 1 0 0 1
r_ ——,—e A A fé k—_\
'| 1 | |
50 ] ! = ! !
o 1 o H 1B =1 |
2 D2 ER ] 571 -
CN ] | [ = — | 5 — |
o | = s mifce -
05 | 1 ] 1 =] — ! — |
&= H !B = ! EH= =1
- 11! =il = ! =1H |
11 m == ] N R} o e e
] S o | Rel [ By vl g —:%:I:
Vog o] 5] oo o] oL [ g e
ry TChe— [ & TC o | [Tcle— [3 | [7C jo—o

If asynchronous serial data were being transmitted, the relationship between Data Clock and serial
Data signals would change, but that is all. Remember, in an asynchronous data stream you use a
x16 or x84 clock and you sample the data on the 8th or 32nd pulse — in the middle of the data
bit.
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SERIAL 1/O CONTROL SIGNALS

The data bus buffer cannot be used simultaneously to receive assembled data bytes and to
transmit data bytes for disassembly. Control logic and control signals which we are now
going to describe determine which of the possible operations is occurring at any
time. The serial 1/0 interface device will smply ignore the clock signal if internal control logic has
not been programmed to recognize it. Also. the Receive Data buffer contents will simply be lost if
the Data Bus buffer i1s not ready to receive an assembled byte.

Let us consider the control signals which must be present to support serial data
being transmitted and received.

First of all, consider transmit logic; it will need two control | SERIAL
signals, one to indicate that the Transmit Data buffer is | TRANSMIT
empty, the other to indicate that the Data buffer is ready to | CONTROL
receive another byte of data. We will call these two signals TE and | SIGNALS
TROY. The two signals are not identical. For example, when serial data is
being output synchronously, TE will be high while a SYNC character is being output; yet TRDY
will be low to indicate that the Transmit Data buffer is indeed ready to receive another data byte,
even though data is currently being output. Here is the way that TE and TRDY signals will be
used:

Transmit Serial DatalDATA X svne >< pata X oata X

U U U U U
TRDY'—‘J—l—___.I m T

Receive logic uses a single Receive Ready signal which we | SERIAL
will call RRDY. This signal tells the CPU that a byte of data has been | RECEIVE
loaded into the Data Bus buffer and can now be read. CONTROL
SIGNALS

Frequently, the RRDY signal will be used to generate an inter-
rupt request. The interrupt can be acknowledged by a very simple in-
struction sequence that moves the received data byte into an appropriate microcomputer system
read-write memory location.

When synchronous data is being received, remember that the | SERIAL

serial 1/0 interface device logic must detect one or two SYNC | RECEIVE

characters before acknowledging valid data. External logic must | SYNCHRONIZATION
know when the serial I/O device has detected these SYNC | CONTROL

characters. We will therefore add a SYNC control signal,
which will be output true as soon as the SYNC characters have been detected.
Some serial I/0 devices allow the SYNC control line to be bidirectional. In this case, rather than
preceding synchronous data with SYNC characters, external logic can input the SYNC
control signal true; then the serial I/O device uses this control pulse in order to start receiving
synchronous data:

Serial Data Ini‘———@ {[ ﬂ
— 1L

Receive ClockJ '

First bit
of first byte
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MODEM CONTROL SIGNALS

Only the modem control signals remain to be described. There are these four in-
dustry-standard modem control signals:

1

2)

DSR (Data Set Ready) -- The madem drives this signal low whenever it is ready to receive
data. The signal is input high at other times. Any other external logic can use this signal as a
master enable/disable. For example, an on/off switch at a unit such as an external video ter-
minal could generate this signal. This allows the microcomputer system to test external logic
before attempting to communicate with it.

DTR (Data Terminal Ready) -- This control signal is the serial 1/O device's equivalent of DSR:
it is output by the serial 1/0 interface device to tell external logic that it is ready to communi-
cate. Under program control you can set this signal high to inhibit all serial I/O operations, or
you can set it low to initiate serial 1/0 operations.

RTS (Request To Send) -- When the serial 1/0 device is ready to communicate with a
modem or other external logic. DSR and DTR will both be low. Now the serial 1/0 device
uses the RTS signal to indicate that it is ready to transmit data. Remember that the receiving
device may be temporarily busy, even though it has been turned on.

CTS (Clear To Send) -~ In a full duplex data link, RTS from the transmitter becomes CTS at the
receiver; if ATS got sent, then clearly there must be a modem at the line end capable of
receiving. In a half duplex data link, the modem receiving RTS sends back CTS two millise-
conds later

The interaction of DSR, DTR, RTS and CTS may be illustrated by the following pro-
gram flow chart:

Set DTR

No
WAIT

Prepare toxt

1o transmit

Output /TS

low

¥

Test CT8

No

Yes

Transmmit
Text
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This is how our serial interface device now looks:

DO
00| ]
D1
External % 2 -—V@
System Bus BT < _<_.CE
£ —>»5TR
Data Lines o5 £z =
05| |
06| sy
o7 L——3RRDY
IOSEL —3» 3 -1
IORW ——3»] z |- TROY
 vad | i3 ’_RD_"_ Receive serial data
Vs | RC [€—— Receive clock
Vag T0 — Transmit serial data
L TC J«&—— Transmit clock

CONTROLLING THE SERIAL 1/0 INTERFACE DEVICE

Given the many options available when using the serial 1/0 interface device, we
are going to need a Control Register in order to select options — and in some
cases to determine the conditions of control signals being output.

First we must select synchronous or asynchronous 1/0; then Table 5-1
identifies the fundamental decisions we must make under program con-
trol. We will refer to Table 5-1 variables as mode parameters,

SERIAL /0
MODE

since they are unlikely to be changed during the course of any serial 1/O operation.

FUNCTION ASYNCHRONOUS SYNCHRONOUS
Clock frequency Baud rate x1, x16 or x64 Usually baud rate x1
Data bits per byte 5.6, 7, 0r8 6,6 7 0r8

Parity QOdd., even or none Odd. even or none
Stop bits 1, 12002 Does not apply

Sync characters Does not apply 1, 2 or external Sync

Table 5-1. Serial I/0 Mode Parameters

Asynchronous 1/O using a x1 clock is sometimes called iso-
synchronous 1/0; it is equivalent to transmitting data using
asynchronous character format (including framing bits) in an otherwise
synchronous data stream.

Within any selected set of mode parameters, the Serial 1/0 In-
terface device must still receive commands. Commands must
identify the direction of serial data flow {transmit or receive), or terminate

current operations, allowing the mode to be modified. Commands must also set the condition of

the DTR and RTS control signals, and respond to any error conditions.

What are the error conditions that commands must take care of, and how
is the microcomputer system to detect them? We will provide the
Serial 1/0 Interface device with an 8-bit Status register. Having
8-bits, we can read a combination of eight input signal statuses and error

ISOSYN-
CHRONOUS
SERIAL 1/0

SERIAL 1/0
COMMANDS

SERIAL 1/0
ERROR
CONDITIONS

conditions. The input signals whose level we must be able to read are:



1) DSR — Data set ready. SERIAL 1/0

2) CTS — Clear To Send. This signal is sometimes left out of the Status INP.UT
e . f . . ) CONTROL
register; Serial 1/0 interface device logic must then automatically wait SIGNALS

for CTS true before initiating a senal data transfer.

3) SYNC — External synchronization.
4) TE — Transmit buffer empty.
5) TRDY — Transmit buffer ready to receive data from the CPU.

8) RDY — Receive buffer ready to send data to the CPU. This signal may be connected to in-
terrupt logic and left out of the Status register.

These are the error conditions that may be reported:
1) Parity error. The wrong parity was detected in a serial data unit.
2) Framing error. In asynchronous mode, start and/or stop bits were not correctly detected.

3) Overrun error. The Receive Data buffer transmitted a byte of data to the Data Bus buffer,
which was not ready to receive data. The data has been lost.

Normally an error condition does not cause a Serial 1/0 Interface device to abort
operations. The error is reported in the Status register and operations continue undaunted.
Using commands, we will react to an error condition in one of these ways:

1) In Synchronous mode, send a NAK {no acknowledge) character back to the transmitting
source.

2) In Asynchronous mode, abort operations and set TD to its “break " signal level (usually high).
3) Execute any other error recovery program.
4) Reset any error bits in the Status register of the Serial 1/0 Interface device.

To our Serial 1/0 Interface device we must now add a Mode/Control register and a
Status register:

D1 |
External 02 | o B : ATS
System Bus D3 @ et & Sl 11— E .
D4 £ & o |3 DTR
Data Lines = 3 ;:é g . =
06| I J—> sYNC
(57 | 1 RROY
oseL —» | BEI R
IORW —)-: Ed > TRDY
Vdd §7 RD Je—— Receive serial data
K =a=} -_RC—<-— Receive clock
T/EQ— L’TE__» Transmit serial data
[ | [TC Jag—— Transmit clock

ADDRESSING THE SERIAL 1/0 INTERFACE DEVICE

The only aspect of the serial 1/0 interface device that we have not covered is how
the device is going to be selected, and how its buffers and registers are ad-
dressed.

So far as the CPU logic is concerned, the device consists of the Data Bus buffer,
the Control register and a Status register.

The Receive Data and Transmit Data buffers lie passively in the path of received and transmitted
data, respectively; they communicate with the Data Bus buffer, therefore do not need additional
direct access.



In reality the Control and Status registers can be looked on as a single addressable unit, since you
can only write into a Control register and you can only read from a Status register.

Thus, we only need two pins in order to access a Serial 1/0 Interface device —
which is just as well, because we only have two pins left. One pin (CS) will constitute

a chip select, while the other pin (RS} selects either the Data Bus buffer or the Control/Status
register:

DO | _}€e—cs
D1 | |€—n=s
External b2 ® L_—> ﬁ-_s
System Bus 03 E 5 = }—"_—— C_TS
Data Lines D4 g = '2 N ._—-» DTAR
o] Yo [25] <— 0%
EN [ fe—one
D7 |——— RRDY
(0SEL ——Jm} 3 BER I e
IORW ] g 3 |3 TROY
[Vad | S é 2| LI RD J—— Receve scnal data
Vss § é k=] | RC |ag—— Receive clock
'E skz > ’T_D >» Transmit serial data
) [Tl < Transmit clock

Since we only have two pins to address the Serial 1/0 Interface device, some external logic will
be required to appropriately decode address lines, external Data bus lines or control lines in order
to create the CS and RS select signals. Use of such external select logic is the rule rather than the
exception within the microcomputer industry. In reality, I/0 interface devices will not have 8 ad-
dress lines, as we indicated earlier in this chapter for the parallel 1/0 interface device.

In Figure 5-18 we can now illustrate one way in which a serial 1/0 interface device
may be integrated into our hypothetical microcomputer system.

REAL-TIME LOGIC

The concept of real-time logic is one that is easy enough to understand. The most ob-
vious example is the maintenance of real time of day by a microcomputer system
that is driving an employee badge reader, and must therefore record the exact time
when each employee enters and leaves his place of work.

At the other end of the time scale. a microcomputer may drive an instrument that measures the
rotation speed of a drum, fan or propeller, and reports rotation speed in thousands of revolutions
per minute.

A microcomputer will have no difficulty keeping track of real time of day since the
whole microcomputer system is driven by a clock signal. All that is needed is to add
some logic which counts clock signals and generates an interrupt request after a specified num-
ber of signal counts. For example, if a clock signal has a period of 500 nanoseconds, then a one
millisecond time interval could be clocked by generating an interrupt evey 2000 clock periods. Of
course, if the microcomputer clock signal is going to be used to measure real time of day, then a
very precise time interval is required. When used in an application that is not time-sensitive, a
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microcomputer may have a very inexpensive crystal generating its clock signal. indeed, in.some
cases a resistor-capacitor hetwork may be used in the place of a crystal:

Vee

’P_

Vss

Some of the microcomputers described in Volume |l provide a programmable timer as an integral
part of device logic. When using other microcomputers, all that is needed is some form of pulse
count logic external to the microcomputer system, generating an interrupt request after a fixed
number of clock periods have been counted.

LOGIC DISTRIBUTION
AMONG MICROCOMPUTER DEVICES

The individual devices that we have described in this chapter fairly represent the
bulk of microcomputers being sold today. However, there is no reason why logic
should be distributed among different devices as described; and if you look at the
real devices described in Volume Il, you will see that there is indeed wide varia-
tion between the logic that one microcomputer manufacturer will implement on
single chips as compared to another.

The tradeoff is power versus number of devices. At any given time semiconductor manufacturers
can implement a certain number of gates worth of logic on one chip. What this logic should be is
the chip designer's business. Nothing but tradition says that a Central Processing Unit and memo-
ry must be implemented on separate chips. There is no economic or scientific reason defining
chip/logic relationships

What happens, in reality, is that a chip designer begins by designing a Central Processing Unit.
Immediately the chip designer is faced with an important tradeoff; presuming that technology has
advanced to the point where he can now put 30% more logic on his chip than the last.time
around. what is this extra 30% to be? Should the new CPU have a more powerful instruction set
with a lot of minicomputer-like addressing modes, or should the instruction set remain the
same — with the extra logic being devoted to read-write memory? Or how about using the ex-
tra logic to put some paralle!l 1/0 on the CPU chip?

In reality the amount of logic which can be crammed onto a single chip is increasing very rapidly.
it is for this reason that we are likely to see an equally rapid evolution in microcomputers, with a
diverging trend. At one end of the spectrum we have already reached the one-chip
microcomputer, where a minimum representation of all the different logic devices
described in this chapter have been crammed onto a single chip. At the other end,
we are seeing microcomputers that exactly reproduce minicomputers.

We, therefore, conclude this chapter with a caution: The segregation of logic on
different devices, as described in this chapter, is nothing more than a very approx-
imate guideline; and as time goes by, you will see more microcomputers merging
logic onto a very few, or even one device.
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Chapter 6
PROGRAMMING MICROCOMPUTERS

Instructions are used to specify any logic sequence that may occur within a
microcomputer system. For example, an instruction may complement the contents
of the CPU’s Accumulator r'egister — or move data from the Accumulator to a memo-
ry word — or output data via an 1/0 port.

To use a microcomputer, therefore, you must first select the devices that will give
you sufficient logic capability; then you must sequence the logic to meet your needs,
by creating a sequence of instructions which, taken together, select chip logic
capabilities that satisfy the needs of your application. The instruction sequence is a
program, and programming is the creation of the instruction sequences.

THE CONCEPT OF
A PROGRAMMING LANGUAGE

The concept of a microcomputer program was introduced in Chapter 3, where a five-
instruction, binary addition program was described.

This chapter discusses the types of instructions which a real microcomputer. system
will need, and how programs are really written. In fact, a discussion of how programs
are written must precede the discussion of instruction types, since we are going to
use programming terminology in order to describe instructions.

There is nothing to prevent you from creating a computer program as a sequence of
binary instruction codes, just as they will appear in memory. or in the Instruction register. The
addition program described in Chapter 4 can be written out in binary or hexadecimal digits as
follows:

Program As A Hexadecimal

Binary Matrix Version of Program
10011100 9C
00001010 OA
00110000 30
01000000 40
10011100 9C
00001010 0A
00110001 31
10000000 80
01100000 60

Were you to generate your microcomputer program directly as a sequence of binary digits, the
chances of misplacing a O or a 1 are very high; and the chances of spotting the error are low. This
is unfortunate since it is not enough for a program to be 99.99% accurate. Unless it is absolutely
accurate, there is always the lurking possibility that the error will manifest itself at an inopportune
moment, with disastrous consequences. It is this inherent necessity for perfection that causes
programmers to grasp at any device which makes errors harder to create and easier to spot.

As compared to creating a program as a sequence of binary digits, the first and
most obvious improvement would be to code the program using hexadecimal
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digits, then find some automatic way of converting the hexadecimal digits to their
binary equivalent.

Writing the program in hexadecimal digits makes it harder to generate errors, because there is
one hexadecimal digit for every four binary digits. On the theory that every digit offers an equal
probability of being written down wrong. programming in hexadecimal digits is likely to generate
one quarter the number of errors, because there are one quarter the number of digits.

Programming in hexadecimal digits also makes errors easier to spot, since detecting a misplaced
hexadecimal digit. while not the simplest thing in the world, surely beats spotting a wrong 1 or O
in a mesmerizing binary pattern. The binary and hexadecimal programs are reproduced below,
each having one error. See how long it takes you to find the errors:

Program As A Hexadecimal

Binary Matrix Version of Program
10011100 ' 9c
00001010 0A
00110000 30
01000000 40
10011100 9C
00001010 AO
00011001 31
10000000 80
01100000 60

In the end, however, the program must be converted into a binary sequence, because
that is how it is going to be stored in memory — and that is how each instruction must be repre-
sented in the Instruction register.

SOURCE PROGRAMS

A teletype, or any other terminal with the appropriate keyboard, generates ASCII
character codes in response to keystrokes; therefore, let us assume that a program
written in hexadecimal digits will initially be generated as a sequence of ASCII
character codes.

Hexadecimal digits are represented by the digits O through 9 plus the letters A through F. The
ASC!l codes for these digits are extracted from Appendix A:

Hexadecimal ASCII
Digit Code

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
01000001
01000010
01000011
01000100
01000101
01000110

MTMUOO TP OONDHDANAWN=O

Suppose you write the binary addition program on a piece of paper, using hex-
adecimal digits, as illustrated in Figure 6-1. This is a source program.
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Figure 6-1. A Source Program Written On Paper

This source program must be converted into a form that can be loaded into memory
and executed. One way of doing this uses paper tape.

A paper tape has eight ‘’channels’’, representing the eight bin- | PAPER
TAPE

ary digits of a byte. A hole punched in any channel represents a 1,
while the absence of a hole represents a 0. Ten bytes are represented by
one inch of paper tape. In other words, every 0.1" of paper tape represents one byte, as follows:

Channel 7
Channel 6
Channet b
Channel 4
Channel 3
Channel 2
Channel 1
Channel O

0.1  One Byte

Usually a line of sprocket holes appears between Channels 2 and 3: the sprocket holes are used
to a toothed wheel to advance the paper tape.

OBJECT PROGRAMS

Our goal is to convert the source program, illustrated in Figure 6-1, into a paper
tape, as illustrated in Figure 6-2. The paper tape in Figure 6-2 is an exact representation of
the binary instruction codes that will be stored in memory; 1 digits are represented by holes, and
0 digits are represented by a lack of holes. The program illustrated in Figure 6-2 is called

an Object program. Binary
Paper Tape Equivalent
10011100
00001010
00110000
01000000
10011100
00001010
00110001
10000000
01100000
22000000
$3%83%35353¢35¢%
2333333 a3
Figure 6-2.  An Object Program On Paper Tape
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CREATING OBJECT PROGRAMS

Converting the source program of Figure 6-1 into the object program of Figure 6-2 is
a two-step procedure.

First the hexadecimal digits illustrated in Figure 6-1 are entered at a keyboard. We
will assume it is a teletype keyboard. Each digit becomes an ASCIl code on paper
tape, as illustrated in Figure 6-3.

Paper Tape Source Program
Source Program As Written on Paper
B
b oo
b oo
}._
b oo
| —
_} 9C
__} 0A
Lo
b o0
} 60
EENe
3> 3
3 3

o]
l
C
€
%

w
Figure 6-3. A Paper Tape Source Program

You could create the paper tape illustrated in Figure 6-3 by | EDITORS

simply turning a teletype punch on, then depressing appropriate
keys at the keyboard.

You could get a little more fancy by attaching the teletype to a computer, which ex-
ecutes a program to read keyboard data and punch paper tape. This program is called
an EDITOR.

Using an Editor program to create source programs is a good idea. For example, the Editor pro-
gram could be written to ignore any key that is not a valid hexadecimal digit (0, 1. 2,3, 4. 5,6, 7,
8.9, A, B, C, D. E, F). Since a teletype can read as well as punch paper tapes, the Editor can read
old source program paper tapes, let you make corrections, then punch out the corrected version
of the source program. This saves the time you would otherwise spend rekeying the error-free
portions of the source program.

Having "used an Editor to create a source program on paper tape, as illustrated in
Figure 6-3, you will execute another program which automatically reads the source
program and creates an object program equivalent; for the moment we will refer to
this as a CONVERTER program.
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With reference to Figures 6-2 and 6-3, the logic of the Converter program is quite simple and is
as follows:

1) Combine the rightmost (low order) four bits of every pair of source program bytes into one
object program byte.

2) If Channels O through 3 of the source program contain 0011, discard these four bits and use
Channels 4 through 7 as is.

3) If Channels O through 3 of the source program contain 0100, discard these four bits and use
9 plus the contents of the four bits in Channels 4 through 7.

These three logic steps may be illustrated as follows:

Source Program As Source Program Object Program
Written On Paper From Figure 6-3 In Figure 6-2

discard 0011

A

, i | —— ] !
40 g g/ %
v — A
discard 0011
discard 0011
4
0A 3 F 4 U A }T J
I
BB ALK —~— /H‘f/

discard 0100. butadd 9 + 1 =A

The object program paper tape, as created by the Converter program, can be loaded directly into
memory to be executed. Chapter 20 of “An Introduction To Microcomputers: Volume I —
Some Real Products” describes how this is done for microcomputer systems.

PROGRAM STORAGE MEDIA

You do not have to use paper tape as the medium for creating source and object programs; in
fact, only the simplest microcomputer systems will use paper tape. Usually a magqnetic
medium, such as a disk unit, is used to store source and object programs (or any
other data).

ASSEMBLY LANGUAGE

Why are hexadecimal digits more efficient than binary digits as a programming medium? Because
hexadecimal digits make the programmer’s job easier, leaving the hard job to the computer.

Easing the programmer’s job — by making errors harder to introduce and easier to spot — is a
significant efficiency.

Making the computer convert a hexadecimal source program into a binary object program — by
executing a Converter program — is an insignificant penalty, because the Converter program will
execute in seconds, or {at most) a few minutes.

Let us take this line of reasoning a step further. Instead of programming in hexadecimal
digits, we will use a programming language which is even simpler for the human pro-
grammer to comprehend.

The programming language source will be very unlike a binary digit object program. so the Con-
verter program, which converts the programming language source program into a binary object
program, becomes more complex; but that remains an insignificant penalty.
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What a programming language tries to do is eliminate syntactical programming er-
rors — the misplaced digit. the wrong instruction code — leaving only logic errors,
specific to the application, as the programmer’s responsibility.

Assembly language is the first step into programming forms more easily understood
by the human programmer.

ASSEMBLY LANGUAGE SYNTAX

The assembly language of any mini or microcomputer consists of a set of instruc-
tions, each of which occupies one line of the source program. Each line may be
divided into four parts, or fields, as follows:

Label Mnemonic Operand Comment
LIM DCO,ADDR1 :LOAD THE SOURCE ADDRESS INTO DC
HERE LMA ;LOAD DATA WORD INTO ACCUMULATOR
AlA HOF :MASK OFF HIGH ORDER FOUR BITS
BZ ouT JUMP OUT IF RESULT IS O
SRA ;STORE MASKED DATA
INC DCO ~ INCREMENT THE DATA COUNTER
JMP HERE ;RETURN FOR NEXT BYTE
ouT SNEXT INSTRUCTION

Every source program instruction represents one object program instruc- | MNEMONIC
tion. FIELD

Consider first the mnemonic field, which may be highlighted as follows:

Label Mnemonic Operand Comment

DCQ.ADDR1 :LOAD THE SOURCE ADDRESS INTO DC
HERE 'LOAD DATA WORD INTO ACCUMULATOR

H'OF :MASK OFF HIGH ORDER FOUR BITS

out JUMP OUT IF RESULT IS O

:STORE MASKED DATA

DCO ANCREMENT THE DATA COUNTER

HERE ‘RETURN FOR NEXT BYTE
out :NEXT INSTRUCTION

The.mnemonic field is the most important field in an assembly language instruction, and is the
only field which must have something in it. This field contains a group of letters which constitute
a code identifying the source program instruction. .

The converter program used to convert assembly language source pro- | ASSEMBLER

grams into binary object programs is called an ASSEMBLER. The Assem-
bler reads the mnemonic field. as a group of ASCIl characters, and substitutes the instruction bin-
ary code in order to generate an object program.

Consider the instruction specified.by the mnemonic SRA. This instruction performs the same
operation as Instruction 5 of the binary addition program described in Chapter 4, where it is
shown using the instruction code 605. The Assembler must therefore have logic which gener-
ates the instruction code 605 upon encountering SRA in the mnemonic field of a source program
instruction:

Binary form of Binary form of
Source ASCIl mnemonic Object program created
Program seen by Assembler by Assembler
S 01010011
R 01010010‘_—700110000
Assembler
A 01000001 logic
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Note carefully that only the binary instruction codes of a microcomputer, that is,
the object code, are sacred and unaiterable. The source program mnemonics are
arbitrarily selected and can be changed at any time simply by rewriting the As-
sembler to recognize the new source program mnemonic.

Every microcomputer's programming manual will define instructions using source program
mnemonics. The fact that selection of mnemonics is a very arbitrary business is demonstrated by
the fact that only in rare cases will two different microcomputers use the same mnemonic to
identify instruction codes that do the same thing. In fact, the selection of instruction mnemonics
can become a very emotional issue. Many Intel 8080 users, for example, have created their own
set of instruction mnemonics and have gone to the trouble of writing their own Assemblers to
recognize their new mnemaonics.

Consider the use of more than one mnemonic to represent the same instruction.

We have just shown how the mnemonic SRA is converted to the object program instruction code
6045. Another Assembler could be written to convert the mnemonic XYZ to the object program
instruction code 601¢. A third Assembler could be written to convert either SRA or XYZ to 60+¢.

The mnemonics used in this chapter have been selected as typical of those used by real
rmcrocomputers.

The mnemonics LIM, LMA, AIA, BZ, SRA. INC and JMP come from the hypothetical microcom-
puter instruction set which is created in Chapter 7.

Next we will discuss the Label field, which is highlighted as follows:

Label Mnemonic Operand Comment
LIM DCO.ADDR1 ‘LOAD THE SOURCE ADDRESS INTO DC
HERE LMA :LOAD DATA WORD INTO ACCUMULATOR
AlA H'OF ‘MASK OFF HIGH ORDER FOUR BITS
BZ ouT JUMP OUT IF RESULT IS O
SRA :STORE MASKED DATA
INC DCO INCREMENT THE DATA COUNTER
JMP HERE RETURN FOR NEXT BYTE
ouT NEXT INSTRUCTION

The label field may or may not have anything in it. If there is anything in | LABEL
the label field, it is a means of addressing the instruction. In other words, | FIELD
you do not identify an instruction by its location in program memory las
we did in Chapter 4), because at the time you are writing the program, you may not know where
in memory the instruction will finish up. This being the case. you give the instruction a name, or
label,

Refer to the example above. The instruction labeled HERE must be identified, because later on
there is an instruction which specifies a change of execution sequence. The instruction:

JMP HERE 'RETURN FOR NEXT BYTE

specities that the instruction labeled HERE is the next instruction to be executed. This is a Jump
instruction; it may be used to illustrate what a label ‘means by drawing the following picture of
program execution sequence:

Label Mnerlnonic Operand Comment
LM DCO,ADDR1 ;LOAD THE SOURCE ADDRESS INTO DC
HERE —PLI\:/IA {LOAD DATA WORD INTO ACCUMULATOR
AI‘A HOF :MASK OFF HIGH ORDER FOUR BITS
B; ouTt JUMP QUT IF RESULT IS O
SFiA :STORE MASKED DATA
INC DCO (INCREMENT THE DATA COUNTER
JMP —— HERE :RETURN FOR NEXT BYTE
ouT ‘NEXT INSTRUCTION
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The Assembler is going to have to keep track of where in memory instructions will finish up.
because the Assembler is going to have to replace every label with an actual memory address.

Suppose the object program form of the above assembly language source program is going to
occupy memory words as follows:

Object

Program

Memory

Locations Label Mnemonic  Operand Comment

03FF.0400.0401 LM DCO.ADDR1 ;LOAD THE SOURCE ADDRESS INTO DC
0402 HERE LMA :LOAD DATA WORD INTO ACCUMULATOR
0403,0404 AlA HOF :MASK OFF HIGH ORDER FOUR BITS
0405,0406 BZ ouT ;JJUMP OQUT IF RESULT ISO

0407 . SRA :STORE MASKED DATA

0408 INC DCO INCREMENT THE DATA COUNTER
0409,040A JMP HERE ‘RETURN FOR NEXT BYTE

0408 ouT NEXT INSTRUCTION .

The Assembler will assign the value 0402 to HERE, and 040B to QUT.

The binary instruction code for the JMP instruction happens to be BC,s. If the label HERE has the
value 04024, then the Assembler will convert the source program instruction:

JMP HERE
to the three object program bytes:
8C

04
02

If you moved the program, so that the object code for:
HERE LMA

now occupied a program memory byte with address OC7A 6. then the Assembler would convert:

JMP HERE
to the three object program bytes:
BC
oc
7A
The Operand field may be highlighted as follows: OPERAND
FIELD
Label Mnemonic Operand Comment
LiM SRICHRD :LOAD THE SOURCE ADDRESS INTO DC
HERE LMA :.LOAD DATA WORD INTO ACCUMULATOR
AlA :MASK OFF HIGH ORDER FOUR BITS
BZ :JUMP OUT IF RESULT IS O
SRA .STORE MASKED DATA
INC INCREMENT THE DATA COUNTER
JMP HE :RETURN FOR NEXT BYTE
ouT NEXT INSTRUCTION
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H'OF" means OF 5. You cannot use subscripts in a source program, so a reasonable alternative
must be selected.

Usually. but not always, the operand field provides information which the Assembler will use to
create the second byte or second and third bytes of an instruction that requires more than one
byte of object program code. For example, suppose the source program instruction:

LM DCO.ADDR1

is instruction 1 of the binary addition program illustrated in Chapter 3. The Assembler will interpret
the source program instruction as follows:

Address of Memory
Memory Word Word
0400 9C
0401 0A LIM  DCO,ADDR1 Instruction 1
0403 30
0403 40

There is no rule which says that the operand must specify or can only specify second and third
object program instruction code bytes. The Intel 8080 microcomputer, for example, has seven ac-
cumulator-type registers and a single instruction which moves data from one register to another.
This source program instruction is wntten as follows:

MOV DS
where D specifies the destination register.
S specifies the source register.

snd D.S constitute the operand field.

But the MOV instruction creates just this one object program byte:

-«—Bit No.

L
These three bits identify the source register.
These three bits identify the destination register.
These two bits identify the instruction as a MOV instruction.

Now look at the contents of the operand fields in the program we are iflustrating in this chapter.

DCO.ADDR1  DCO identifies the Data Counter into which immediate data must be loaded.
ADDR1 s a label representing the address which must be loaded into the Data
Counter. The Assembler will convert ADDR1 into a 16-bit binary data value

HOF specifies the immediate, hexadecimal two-digit value OF,s. The instruction
mnemonic AlA stands for AND Immediate. This combination of mnemonic and
operand cause whatever is in the Accumulator to be ANDed with the actual value
in the operand field. In this case. since the operand field i1s OF 6. it has the effect of
setting to zero the high order four bits of the accumulator while leaving the low
order four bits of the Accumulator as they are



ouT appearing in operand fields, identify instructions with labels OUT and HERE. The

and
HER

DCO

The comment field contains information which makes the pro- | COMMENT
gram easier to read but has no effect on the binary object pro- | FIELD
gram created by the Assembler. In other words, the Assembler ig-
nores the comment field.

instruction:
E
BZ ouT :JUMP OUT IF RESULT IS ZERO
specifies that if the Accumulator contains a zero value following the AND Immedi-
ate instruction, then the next instruction to be executed must be the instruction
with label OUT, not the SRA instruction which, following sequentially, would nor-
mally be executed next. The instruction:
JMP HERE :RETURN FOR NEXT BYTE
states that the next instruction to be executed must unconditionally be the instruc-
tion with the label HERE, not the instruction with label OUT, which, following se-
quentially, would otherwise have been the next instruction executed.
specifies the Data Counter whose contents is to be incremented.

How is the Assembler going to tell where one field ends and the | FIELD

nex
and

1)

2)
3)

4)

5)

6)

t begins? Usually space codes are used to separate fields, | IDENTIFICATION

the Assembler uses these rules:

All characters from the first character on a line up to the first space code constitute the label
field.

If the first character is a space code, then the label field is presumed to be empty.
Contiguous space codes are treated as though they were one space code.

All characters between the first and second space codes (or contiguous space codes) are in-
terpreted as the mnemonic field.

If the mnemonic does not require an operand, the Assembler quits here, assuming every-
thing that follows is comment.

If the mnemonic does require an operand, then the Assembler assumes that all characters
between the second and third space codes (or contiguous space codes) constitute the
operand field.

Sometimes comment fields are preceded by a fixed character. We have used the semicolon
for this purpose.

Space code field delimiters may be illustrated, according to the above rules, as follows:

Label Mnemonic Operand Comment

HER

ouTt

~'DCO.ADDR1 ‘LOAD THE SOURCE ADDRESS INTO DC
:LOAD DATA WORD INTO ACCUMULATOR
;MASK OFF HIGH ORDER FOUR BITS

JUMP QUT IF RESULT IS O

‘STORE MASKED DATA

INCREMENT THE DATA COUNTER
‘RETURN FOR NEXT BYTE

NEXT INSTRUCTION
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ASSEMBLER DIRECTIVES

An assembly language program, such as the seven-instruction sequence we have been using to
illustrate assembly language instruction fields, cannot be assembled as it stands. To give fixed, bi-
nary values to labels OUT and HERE, the Assembler must be told where in program memory the
object program will eventually reside.

There is a class of instructions, referred to as Assembler Directives, which you will use to provide
the Assembler with information that it cannot deduce for itself.

In explaining how the labels OUT and HERE in the operand field would ORIGIN

be interpreted by the Assembler, we illustrated the program sequence DIRECTIVE
occupying program memory locations beginning at 03FF. You would
specify this origin to the Assembler using an Origin assembler directive as follows:

Label Mnemonic Operand Comment

:.LOAD THE SOURCE ADDRESS INTO DC

HERE ;LOAD DATA WORD INTO ACCUMULATOR
AlA HOF’ :MASK OFF HIGH ORDER FOURBITS
B8z ouT JUMP OUT IF RESULT ISO
SRA ;STORE MASKED DATA
INC DCO INCREMENT THE DATA COUNTER
JMP HERE ;RETURN FOR NEXT BYTE
ouT NEXT INSTRUCTION

The origin assembler directive generates no object code. lts sole purpose in the program is to tell
the Assembler where the object code will be located in program memory, and thus how to
calculate the real binary memory addresses that must be substituted for instruction labels.

Origin is the only assembler directive that is absolutely mandatory. | END
Another assembler directive that is always present, because it makes the | DIRECTIVE
job of creating an Assembler easier, is the END directive. This is the last
instruction in a program and tells the Assembler that there are no more executable instructions.
The END assembler directive may be illustrated as follows:

Label Mnemonic Operand Comment

ORG HO3FF

LIM DCO,ADDR1 :LOAD THE SOURCE ADDRESS INTO DC
HERE LMA :LOAD DATA WORD INTO ACCUMULATOR

AlA H'OF :MASK OFF HIGH ORDER FOUR BITS

BZ ouT JUMP OUT IF RESULT 1S O

SRA :STORE MASKED DATA

INC DCO ANCREMENT THE DATA COUNTER

JMP HERE ;RETURN FORNEXT BYTE

The Equate assembler directive is one more that is universally present | EQUATE
because it makes assembly language programming much easier. You use | DIRECTIVE
the Equate assembler directive to assign a value to a symbol or a label.
Consider the instruction.

AlA HOF :MASK OFF HIGH FOUR BITS



The operand H'OF’ could be replaced by a symbol which is equated to the value OF . This is il-
lustrated as follows:

Label Mnemonic Operand Comment
ORG HO3FF
LIM DCO,ADDR1 LOAD THE SOURCE ADDRESS INTO DC
HERE LMA :LOAD DATA WORD INTO ACCUMULATOR
AlA VALUE ‘MASK OFF HIGH ORDER FOUR BITS
BZ ouT JUMP OUT IF RESULT IS O
SRA :STORE MASKED DATA
INC DCO JINCREMENT THE DATA COUNTER
JMP HERE ;RETURN FOR NEXT BYTE
ouTt SNEXT INSTRUCTION

An Equate assembler directive could also be used to assign a value to the address labeled
ADDR1. However, you would only do this if ADDR1 did not exist as an instruction label some-
where else within the program

There are two mnemonics that appear in every assembly language and DEFINE
are neither instructions nor assembler directives. These are the Define | CONSTANT
Constant and Define Address.

The Define Constant mnemonic is used to specify a single byte of actual | DEFINE
data. The Define Address mnemonic is used to specify two bytes of ac- | ADDRESS
tual data. Here is an example of how these two mnemonics would be
used. The instruction sequence:

ORG H 0700

DC H3A
ADDRI1 DA H27AC
VALUE DC H'OF’

would cause the Assembler to directly create the following memory map:

0700 3A
0701 27
0702 AC
0703 OF
0704
0705
0706

MEMORY ADDRESSING

Memory addressing has already been introduced in Chapter 4, where some dis-
cussion of the subject was needed in order to define the registers which a CPU
will require. We are now going to cover the subject of memory addressing
thoroughly as a precursor to defining a microcomputer’s instruction set.

MICROCOMPUTER MEMORY
ADDRESSING — WHERE IT BEGAN

We will begin our discussion of microcomputer addressing modes by looking at the
subject in overall perspective.




The forerunner of all microcomputer instruction sets is the instruction set of the Intel
8008 microcomputer and the Datapoint 2200 minicomputer. These two devices have
the same instruction set, but the Datapoint 2200 executes instructions approximately ten times as
fast. Mr. Vic Poor (and associates) at Datapoint developed this instruction set for the limited data
processing environment of “intelligent terminals.” Discrete logic replacement was not what they
had in mind. Vic Poor’s instruction set was deliberately fimited, to accommodate the confines of
large scale integration (LSI) technology as it stood in 1969-1970. The instruction set’s mem-
ory addressing capabilities were primitive out of necessity, not desire.

Intel, who initially developed the 8008 microcomputer at Datapoint's request, found a significant
market for the product in discrete logic replacement — a market for which the instruction set was
never intended.

Subsequent microcomputer instruction sets have evolved as a result of two compet-
ing influences:

a) Microcomputer designers incorporated minicomputer features as fast as advances in LS!
technology would allow — while there was no definable microcomputer user base.

b) Now that a definable microcomputer user base is beginning to emerge, microcomputer
designers are responding directly to users’ needs.

Influences (a) and (b), above, do indeed differ. Microcomputer users’ needs are
not always well suited by minicomputer instruction sets, a fact to which we will
continuously return in this chapter.

IMPLIED MEMORY ADDRESSING

An instruction that uses implied memory addressing specifies the contents of a
Data Counter as the memory address.

Implied memory addressing has been described in detail in Chapter 4; therefore, we will simply:
summarize this addressing mode.

Using the Data Counter to address memory is a two-step process:
@ First, the required memory address must be loaded into the Data Counter.

® Next a single-byte memory reference instruction is executed, where the Data Counter con-
tains the address of the memory location to be referenced.

Consider the first two instructions of the programming example we have been using in this
chapter. Execution of the two instructions may be illustrated as follows:

Program
Memory

®

067A 9C LIM

0678 2F DCOADDR1 2F3C Data Counter
067C 3C 4A Accumulator
067D 40 LMA

2F3C 4A
2F3D




Object cade for the first instruction (LIM DCO,ADDR1) occupies three program memory bytes,
with addresses 067A, 067B, and 067C. These memory addresses have been arbitrarily selected.
Byte O67A contains an 8-bit object program code which represents the LIM DCO,ADDR1 instruc-
tion” mnemonic. This instruction specifies that the contents of the next two program memory
bytes are to be loaded, as a 16-bit value, into Data Counter DCO. Recall that the actual binary
code appearing in memory word 067A will vary from microcomputer to microcomputer.

The second instruction, with mnemonic LMA, specifies that the contents of the
memory location which is addressed by Data Counter DCO is to be loaded into the
Accumulator. We call this IMPLIED memory addressing, because the memory
reference instruction, in this case LMA, does not specify a memory address;
rather, it stipulates that the memory location whose address is implied by Data
Counter DCO is the memory location to be referenced.

DIRECT MEMORY ADDRESSING

An instruction with direct memory addressing directly specifies the address of the
memory location to be referenced.

Simple direct memory addressing has been described in Chapter 4 along with implied memory
addressing. In terms of the instruction sequence we are using in this chapter, the LIM and LMA
instructions could be combined into one direct memory reference instruction as follows:

Program
Memory
“N2F3C Address Register

067A 43 LRA 4A Accumulator
0678 2F ADDRY
067C 3C
067D
067E
067F
2F3A
2F38
2F3C 4A
2F3D

An Address Register performs the same function as a Data Counter, but it does so transiently.

A direct memory reference instruction always starts with a memory address being computed and
loaded into the Address register. This becomes the address of the memory location to be
reference.

Direct addressing is the simplest addressing mode used by minicomputers. Implied memory ad-
dressing is @ microcomputer phenomenon.

DIRECT VERSUS IMPLIED ADDRESSING

By way of direct comparison, a minicomputer Address register is referred to as a
nonprogrammabTe register. This means that a minicomputer has no instructions that merely
load data into the Address register or modify the Address register's contents. The process of
changing the contents of the Address register is always one transient step in the course of ex-
ecuting a memory reference instruction.
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The Data Counter in a microcomputer is programmable. In fact, every microcomputer will
have a number of instructions that simply load data into the Data Counter, or modify the Data
Counter contents, but do nothing else.

Some microcomputers prO\;ide both implied and direct memory addressing. These
microcomputers have one or more Data Counters for implied memory addressing, plus an addi-
tional Address register for direct memory addressing.

The first microcomputers used implied memory addressing only. because it was simple to design
into the CPU Control Unit; there was no other reason. The penalty incurred by the use of implied
memory addressing Is that it takes two instructions to do what one direct memory addressing in-
struction could do. LS| technology has advanced to the point where microcomputer designers
could do away with implied memory addressing, but they have not done so. Today most micro-
computers include a limited number of instructions with direct memory addressing, but implied
memory addressing remains the standard; why? Because some necessary variations of direct
memory addressing generate features that are very undesirable when programs are stored in
ROM.

VARIATIONS OF DIRECT
MEMORY ADDRESSING

We will first consider variations of direct memory addressing as they apply to
minicomputers with 12-bit and 16-bit words. This is a good beginning, since direct memo-
ry addressing variations evolved as minicomputer memory addressing features.

A 16-bit word allows a minicomputer to have 65,536 different instructions in its instruction set. A
12-bit word allows a minicomputer to have 4096 different instructions in its instruction set. These
are ridiculously high numbers. Minicomputers therefore separate instruction words into instruc-
tion code bits and address bits.

Consider first a minicomputer with a 12-bit word. Digital Equip- 12-BIT WORD
ment Corporation's PDP-8, the world’s first popular minicomputer, uses a | DIRECT
12-bit word. The PDP-8 CPU is now manufactured by Intersil on a single | ADDRESSING

chip. called the IM6100. The 12-bit word may be used as follows:
SRR
OO OO XX IX XXX IX X
- 4 INTERSIL
: LAddress bits (22 = 256¢) IM6100

Instruction code bits

Eight address bits allow this instruction to directly address up to 2566 memory words;
256 words constitutes a very small memory, so we will have to seek ways of expand-
ing our memory addressing range, without using more addressing bits.

Will four instruction code bits be enough? Yes indeed. Remember, the above separa-
tion of twelve bits into four instruction code bits and eight address bits only applies to memory
reference instructions. This is how the PDP-8 and IM6100 interpret memory reference instruc-
tions:

l_l_T F‘lIXIXMXWIxm
IS

Address bits, if memory reference instruction

Indirect address option {which we will describe later)

Only a memory reference instruction if these three bits
hold 000, 001, 010, 011, 100 or 101 (for 8 memory
reference instructions) 110 and 111 specify non-
memory reference instructions




HIRRRNERENEN
A

A

These 9 bits allow 512 non-
memory reference
instructions, for each of two
instruction code options; thus
a total of 1024 non-memory
reference instructions allowed.

These 3 instruction code bits
specify a non-memory
reference instruction, if they
contain 110 or 111.

A 16-bit computer could address 40969 memory words with 12 bits of an instruc-
tion word:

LoJo O[O XXIXIXIXIXIXIXTX[XTXTX]

1 ;Address bits (2'2 = 4096,

Instruction code bits

The 16-bit computer could offer more instruction code options, and a smaller ad-
dressing range, as follows:

LoloJoJofoJofoJoIX IXIXIX[XIXIXx]

‘[ L_B address bits (28 = 256)

8 instruction code bits

Most minicomputers divide their single word instructions into eight address bits and
eight instruction code bits, as illustrated above. An 8-bit microcomputer can easily
achieve the same result, using two 8-bit words, as follows:

8 instruction code bits

—
ofojojojojolofo

X XEXEXXE XXX
—_—

e p——
8 address bits (28 = 256)
A 12-bit computer could address 4096 ;5 words by providing two words per instruction:

12 mstructigp code bits

ojojojojojofojofofofofo
XEXPXIXEX XXX X XXX

N——

12 addvress bits~
(212 = 409610)




Although two 12-bit words per instruction is very feasible, all PDP-8 instructions are, in fact, one-
word instructions.

If a 16-bit computer uses two words per instruction, it can directly address 65,536,
words of memory:
16 instruction code bits

oljojojojojojojojojojojofo
XEXPX XXX XXX XX X

010
X[X

o

x

16 address bits
(2'¢ = 65,5364

The microcomputer programming examples we have used earlier in this book specify
16-bit memory addresses via three 8-bit words, as follows:

Word 1 [0f0l0]O]O]0]O
Word 2 | XIXIXIXIXEX X
Word 3 | XPXIXIXIX XXX

8 instruction code bits

x |O

16 address bits

It is clear that one way or another, instructions can have any- | ADDRESS
where from 8 to 16 address bits. What is the optimum number? | BITS — THE
In minicomputer applications, statistically we find the 80% to 90% of | OPTIMUM
Jump and Branch instructions only need an addressing range +128 | NUMBER
words (addressable with eight address bits):

XXXX — 128 pm——m—m—— — —
Instruction Most frequently
here, at addressed
Address X X X X Memory Words
XXXX + 127 ———— e —

Most minicomputers provide more than one instruction word format, including two
or all three of the following:

Format 1 (ofofoJofoJ oo Jo XX XIXIX[xTX]x]

flimited — 2 > ,
addressing ) X 8Addressbits

range) 8 Instruction code bits
Format 2 LoloJol o DAIXIXIXIXIX XXX IXIx[x]

(limited ~ d

addressing A L 12 Address bits

range) 4 Instruction code bits
Format 3 ojojolojojojolololojofolololofo 16 Instruction code bits
(extended XIXIXEX XXX DX D DX D I Ixx 16 Address bits
addressing

range)



Instructions with a restricted addressing range are referred to as SHORT FORM instruction. LONG
FORM instructions have sufficient address bits to directly address any word in memory.

PAGED DIRECT ADDRESSING

All computers provide some instructions with a limited addressing range. If all of a
computer’s instructions are subject to a limited addressing range, the computer is
said to be PAGED.

To illustrate paging. consider a 12-bit minicomputer with eight address‘ bits per instruction.
Memory is effectively segmented into 2564(100+g) word pages as follows:

Hex
Memory
Address Page Count
______ 0000
_____ —0100+¢ Page 1
______ 020016 Page 2
______ 0300+ Page 3
______ 0900+¢ Page 10
______ OAOOm '

Etc.

The eight address bits of an instruction word provide the two low order hexadecimal digits of a
four digit memory address: the two high order digits are taken from the Program Counter. Thus
the instruction:

JMP H'3C

would be coded in one 12-bit word, as follows:

Lol tofofo 1T T1]o]o]

v}

} ! i Address bits are 3C+g.(H' ‘) specifies a hexadecimal value
between quotes.

Jump, direct instruction. Next instruction to be executed has
object code stored in memory location computed using
address bits of this instruction word.




Suppose the jump instruction is stored in a memory word with the ad- EFFECTIVE
dress 0709,4. After the jump instruction has been fetched from memo- MEMORY
ry. the Program Counter will contain the value 070A.6. The effective ADDRESS
memocry address, therefore, is given by the two high order digits of the
Program Counter, plus the two low order digits from the instruction, as follows:

12-Bit Program Counter 12 Bit Instruction Register
Lol1[iTt]ofo[ofo[ Tolo[7] (AT Tofoloi [ [ ]ol0]
7 0 9 A 3 C

Effective Address: 073C

The high order digits, taken from the Program Counter, are | PAGE
called the page number. The low order digits, supplied by the in- | NUMBER
struction code, are the address within the page. Combining the
two portions of the address yields the effective memory address. The term “effec-
tive memory address” applies to any memory address that must be computed in
some way using information provided by the instruction.

As illustrated below, the instruction:
JMP H3C

will cause the value 073C,4 to be loaded into the Program Counter, so the next instruction will be
fetched from memory location 073C,.

Memory Memory
(12 bitwords) ~ Address

@ Instruction Register
@
Program Counter

A3C

Page specified by two high order
digits of Program Counter

This illustration is described, with reference to the keys @.@and @ as follows:



@ The Program Counter addresses memory word 0709,¢. The contents of this memory word,
A3C,. is fetched and stored in the Instruction register. The Program Counter is incremented
to 07OA1S;. thus, it addresses the next sequential program memory word.

@ The instruction code in the Instruction register is an unconditional jump. The two low order
digits of the Instruction register (3C,¢) are moved to the two low order digits of the Program
Counter, which now contains 073C,g.

@ The next instruction will be fetched from memory location 073C .

Consider another example. The instruction:
LMA H'6C

located on Page 2F ;g would cause the contents of memory location 2F6C ¢ to be loaded into the
Accumulator. Thé same instruction on Page 1Cy¢ wouid cause the contents of memory location
1C6C 15 to be loaded into the Accumulator.

With many paged computers a devious error occurs at the PAGE

page boundaries. Recall that the Program Counter is incremented BOUNDARY
after an instruction has been fetched. Therefore the page number is ac- ERROR
quired from the high order digits of the Program Counter, AFTER the
Program Counter has been incremented. Suppose the instruction:

LMA H'6C

were located at a memory word with address 2FFF . After this instruction has been fetched, the
Program Counter will contain 3000,5. Now the contents of the memory word with address
306C,s would be loaded into the Accumulator, instead of the memory word with address
2FBC .

The most severe restriction imposed by fixed pages is that an instruction cannot
reference any memory word outside the page on which the instruction is located: to read data, to
write data or to execute a program branch or jump. Therefore, programs cannot reside across
a page boundary:

Page 06 —»¢ | |

Inoperable memory
location for a program

: module or subroutine in a
[ . ‘ Paged Computer

s oo rieves e - gy, i e

Page 07 —w-¢ Lo i

Page 08

Paging is wasteful of computer memory, because it requires programs to access
all data on, or via addresses stored on the program’s page. Thus numbers used com-
monly by programs on many different pages must be stored repeatedly on each page, or else we
must add some new flexibility to paged addressing.
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Also, when writing program modules and subroutines, it is difficult to contrive that every module
exactly fills one page. As a result, a small portion of memory at the end of each page is wasted,
since it is 100 small to accommodate even the smallest subroutine. Thus a programmer must
frequently waste a lot of time juggling the sizes and memory locations of his program
modules and subroutines.

Consider, for example, a program with the following modules:

Program Size (words)
MAIN 881
SuBt 224
SUB2 781
suB3 5216
SUB4 3846
SuUBS 5016
SUB6 6616

We can map the program into memory as follows:

Program Memory Location
MAIN 030045 - 038744
SuB2 038845 - 03FF 5
SuB3 040015 - 045144
SUB4 04525 - 04894
SUBS 04905 - O4FF g
SuUB6 05005 - 0565+
SUBT 05665 - 058544

But beware of an error in subroutine SUB3 that requires you to increase its size (by two instruc-
tions, say). Subroutines SUB3, SUB4. and SUB5 no longer fit on one page. and correcting SUB3
will require remapping the whole program in memory.

One method of eliminating some of the restrictions imposed by | BASE PAGE

paged addressing is to provide the computer with a base page.

This is what the PDP-8 does, so fet us look at this specific case. In order to give itself one more
option, the PDP-8 uses just seven of the eight address bits to compute addresses within a page:
in other words, the PDP-8 page is not 256 words long, it is 128 words long. However, the eighth
bit aflows you to address either the current page. that is, the page on which the instruction is lo-
cated. or you can address the base page. that is, one of the first 128 words of memory. This is
illustrated as follows:

12-Bit Program Counter 12-Bit Instruction Register

RREERREERERE (ol o ofo[oIXIXIXIX[X[X[x]

Effective memory =~
address, D = 1 EIPTP,]PEIX]XIXIXIXIXIXI

Effective memory
address, D = 0 [oToToToJo I XIXIXIXIXTXIX]
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In the above illustration, symbols are used as follows:

represents individual binary digits with the Program Counter
represents the instruction code bits of the Instruction register

represents individual address bits of the instruction word.

g X O 7T

is the page select bit. If this bit s 0. then the effective memory address is computed by
moving the X bits into the low order bits of an Address register and inserting 0's in the five
high order bits of the Address register; in other words, memory locations from O to 127
may be addreased. This is referred to as the base page of memory. If the D bitis 1, then
the five high order bits of the Address register are taken from the five high order bits of the
Program Counter; only memory locations within the 128 word page in which the instruc-
tion resides may be referenced.

A more flexible variation of paging is PROGRAM RELATIVE pag- PROGRAM
ing, in which it is assumed that the address bits of an instruction repre- | RELATIVE
sent a signed binary displacement, which must be added to the Program | PAGING

Counter contents.

A program relative page may be illustrated as fcllows:

Range of Memory Instruction
Directly Addressable Address A —p»
by Instruction A

by Instruction B

Program relative addressing allows an instruction to address memory in a forward
{positive) or backward (negative) direction with a range in each direction of half a
page. Consider again an 8-bit address, this time in a 16-bit word:

{ofoToTooToToTo XXX XX x[X1X]

L 8 Address bits

8 Instruction code bits

Assume that the high order address bit is a sign bit; if the instruction is located at memory word
24AE 6, and the eight address bits contain 7As. then the effective memory address is given by:

0010010010101 110 24AE
0000000001111010 _IA
0010010100101000 2528

Sign bit is propagated through high order eight bits.
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This example of forward memory addressing may be illustrated using assembly language instruc-
tions as follows:

Memory Object

Address Code Source Program instruction
24AD BC7A JMP HERE
2528 HERE LMA  THERE

In the above illustration, BC represents the JMP instruction code. (The LMA instruction’s object
code is irrelevant to the discussion at hand, so it is left out.) The Assembler will compute the ad-
dress bits of the JMP instruction by subtracting the value in the Program Counter, after the JMP
instruction has been loaded, from the value associated with the label HERE:

Label HERE is equivalent to 2528
PC contents after instruction foad =_24AE

Difference = 007A

if the Assembler computes a value greater than 7F 15, the JMP instruction is illegal. and an error
message will be transmitted to the errant programmer by the assembler.

Suppose the two instructions were reversed; we would now have:

Memory Object

Address Code Source Program Instruction
24AD HERE LMA  THERE
2528 BC84 JMP HERE

The Assembler will compute address bits of the JMP instruction in the same way. by subtracting
the value in the Program Counter, after the JMP instruction has been loaded. from the value asso-
ciated with label HERE:

Label HERE is equivalent to 24AD
PC contents after instruction load = 2529
Difference = —7C

—7C is stored in its twos complement form:

7€=01111100
ones complement = 100000 11
twos complement = 1 0000 100 = 84

The effective memory address provided by the JMP instruction is computed as follows:

(

0010010100101001 2529
$41 1113110000100 FF84
0010010010101 101 24AD

Sign bit is propagated through high order eight bits.
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DIRECT MEMORY ADDRESSING
IN MICROCOMPUTERS

Variations of direct addressing which are useful in minicomputer applications are not
useful, and are frequently not even viable, in microcomputer applications. Let us
carefully examine why this is the case.

Consider first a three-byte, direct memory reference instruction, | EXTENDED
which we have represented as follows: DIRECT
ADDRESSING

Instruction code

Two address bytes generated
16-bit address

This instruction format will certainly work. The two address bytes allow any memory location to
be addressed directly either to store, read or otherwise manipulate data, or to change program
execution sequence by executing a jump or branch instruction. There are, however, two
problems associated with the use of three-byte, direct memory reference instruc-
tions: first, the two address bytes cannot be changed; second, three-byte instruc-
tions are very wasteful of memory.

Here is an example of an instruction sequence that moves data from one buffer to
another buffer:

® Load first butfer
starting address
) * [ Toad second buffer
starting address
[0} Load buffer length
® Load byte from first

buffer into
Accumulator

Store Accumulator
contents into second
© buffer. next byte

® Increment first
butfer address
1) Increment second
buffer address
Decrement
buffer length
@

<l

Is

?

YES
Consider how the above program logic sequence would be executed by a
microcomputer that has two Data Counters (DCO and DC1) and two Accumula-
tors, (A0 and A1). Assume that Buffer 1 begins at memory location 0470,,, Buffer

2 begins at memory location 08CO0,,, and each buffer is eight bytes long. llustrating
CPU Data register contents, this is what happens:
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Observe that the program, as illustrated, fits into 15 program memory bytes. in-
structions 4 through 9 are re-executed eight times. This is possible, since with
each re-execution, the part that changes, data memory addresses, changes in the
Data Counters. This is the virtue of implied memory addressing.

How would the same program logic be implemented by a minicomputer that has
direct addressing, but no implied addressing? If the program is in ROM, it will have to
consist of a pair of three-byte instructions repeated eight times:

o =) o = o (=} o =)

< < < < < < g <

- O © B - © CIRe] - 5 3R] - B © 5

T O o] S O @ T D ) T D o)

= SR = o = = [ o =
c = = £ o = = = o = o = o .= = =
i} »n T 40 n T o n T 3T n T
SO [se] N &) — [col o~ @t < | ®| Ml e
O~ S|O S|~ olo O~ OO O~ =] k%1 B

Total program length will be 48 bytes. Implied memory addressing has saved memory by

allowing a set of instructions to be re-executed, and by allowing memory reference instructions
to occupy a single byte:

Implied Memory

Direct Memory
Reference Instruction

Reference Instruction

}Load into accumulator
data addressed by DC

data addressed by
these two bytes

} Load into Accumulator

Addressing problems associated with microcomputers become | PAGED
more severe if you try to use any type of paged direct address- | DIRECT
ing. Minicomputer designers use paged direct addressing in order to | ADDRESSING
reduce the number of address bits that are part of each memory reference

instruction. Pages may be absolute or program relative, as we have just described

The problem with any form of paged, direct addressing is th4t it can only be used for
Jump and Branch instructions. This form of addressing simply cannot be used for
memory reference instructions that write into memory. ROM usually comes in 1024-byte
(or larger) modules. Pages are either 128 or 256 bytes long. Therefore, an entire page will either

be ROM or RAM. It is not possible to have the program area of a page in ROM and the data area
of the same page in RAM:
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One 1024 byte

ROM Module
Page O
Page 1 No Write instructions, using any kind of paged addressing,
' can exist here.
Page 2
Page 3 — o rd_ I} Write instructions with program relative, paged addressing
'gh order can exist here, but only if next page is RAM
half of page

It would certainly be possible to have memory reference instructions that read data out of pro-
gram memory, but this would require dividing up memory into a checkerboard of program and
data areas, as follows:

One 1024 byte
ROM Module

data

Page 0 program

data

Page 1 program

data
data

Page 2
program

Page 3 program

data

This type of complex memory mapping greatly increases the cost of creating microcomputer pro-
grams, plus the potential for introducing programming errors. As a result, microcomputer pro-
grams are almost always written with Separate program and data areas of memory as follows:



Memory

Program Area 1

—

Data Area

So universal is this division of memory into program and data areas that some microcomputers
specify separate memories for programs and for data. This means that the Program Counter ad-
dresses a memory which the Data Counter cannot address; and conversely, the Data Counter ad-
dresses a memory which the Program Counter cannot address.

AUTO INCREMENT AND AUTO DECREMENT

In the data movement example we just described, observe that the two addresses,
stored in the two Data Counters, must be incremented after each memory reference.

It is easy to imagine program logic that starts at the other end of a data buffer, so the memory ad-
dress must be decremented after every memory access. In either case, we can create a
single one-byte instruction that specifies a memory reference operation, plus a
memory address increment or decrement:

(@) Load AC via DCO\

(5) store AD via DCT — Load AU via DCO. merement DCO
® 1cromen DCO - G D Loat AQvia DCT narement DC
@ rcrment DCH

THE STACK

There is a variation of implied memory addressing which has existed in many
minicomputers and is implemented in one form or another in almost every
microcomputer; it is known as Stack addressing. The concept of a stack was introduced
at the end of Chapter 4, in connection with Chip Slice Control Unit addressing logic.

MEMORY STACKS

The more common Stack architecture sets aside some area of | STACK
data memory for transient storage of data and addresses. The | POINTER
Stack is addressed by a Data Counter type of register, called the
Stack Pointer.

Only two Stack operations are usually allowed: writing to the top of the Stack
(referred to as a Push), and reading from the top of the Stack (referred to as a Pop,
or a Pull).

The Stack gets its name from the fact that it may be visualized as a stack of data words, where
only the last data word entered into the stack. or the first empty data word at the top of the stack.
may be accessed. In either case the Stack is accessed via an address stared in the Stack Pointer.
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A Push operation, which writes into the Stack, will cause data from the
Accumulator (or some other CPU register) to be written into the memory .

word currently addressed by the Stack Pointer (SP): the Stack Pointer contents is then automat-
ically incremented to address the next free word, at the new top of the Stack, as follows:

Before Push i After Push
Stack Stack

. 21 0C40 21 0C40

A aA 0cat A 4A oca1
P 62 0ca2 sp 62 oc4z
? 0c43 FE 0c43

? 0caa ? ocas4

2 0C45 ? 0C45

> 0c4e Top of Stack 2 0C48

? oca7 ? oc47

A Pull or Pop operation is the exact reverse of a Push; the Stack register

contents is decremented to address the last word written into the top of

the Stack, then the contents of the memory word addressed by the Stack is moved to the Ac-
cumulator or some other CPU register. This may be illustrated as follows:

Before Pop After Pop
Stack Stack
FA 210A FA 210A-
A 3E 2108 A 3t 2108
P 01 210 sp 01 210C
24 2100 2A 2100
31 210E 31 2108
> 210F<\ . ? 210F
B 2110 Top of Stack ? 2110
? 2111 ? PARNI

Observe that at the end of a Pop operation, the Stack Pointer is again addressing the first unused
memory word at the top of the Stack; once data has been read out of the top of the Stack, the
data word is assumed to be empty.

The parallel between implied memory addressing, using a Data Counter, and Stack memory ad-
dressing, using a Stack Pointer. is self-evident. In fact the only difference between the two is that
the Stack Pointer contents MUST be incremented after a write, and MUST be decremented after
a read.

There is, of course, nothing to stop a Stack being implemented in memory in the opposite direc-
tion; that is, the bottom of the Stack as accessed rather than the top, in the sense illustrated
above. Now the Stack will be decremented after a write and incremented after a read. Otherwise
nothing changes.



THE CASCADE STACK

There is an alternative Stack architecture that is less frequently seen. This

architecture provides a limited number of registers (it is commonly 8 or 16}
in the CPU. When a byte of data is pushed onto the Stack it cascades down as follows:

Before Push After Push
Stack Stack
21 c3
FA D 21
3E FA
C 40 :> 3E
0 :> 40

G 7

Lost = AQ 3C

When a byte of data is pulled or popped from the top of the Stack, data
cascades up as follows:

Before Pop After Pop
" A
Stack Stack
= :
-~ - 0
s e
T Tt

This Stack architecture requires no Stack Pointer, since at all imes data is being written into, or
read out of the top of the Stack.

HOW A STACK IS USED

The Stack is a great convenience to minicomputer users; it is an absolute
necessity in microcomputer applications.

Consider the use of subroutines. Most programs, whether they are | SUBROUTINES

written for a minicomputer or a microcomputer, consist of a number of
frequently used instruction sequences, each of which is recorded once, somewhere in program
memory. The routine is then accessed as a subroutine.

An application may require anthmetic 10 pe performed on 32-bit numbers, occupying four con-
tiguous bytes as follows:

Byte 3 Byte 2 Byte 1 Byte O

[ | J

—
A single, 32-bit number
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The most efficient way of handling this type of arithmetic is to write four separate programs to
perform 32-bit addition, subtraction, multiplication, and division. Now every time you want to
perform addition (for example), you will use an instruction which CALLS the
subroutine. A call may be illustrated as follows:

SUBROUTINE
CALL
Program Memory Used by Main Program
7 >

Program Memory used
by 32-bit binary
addition subroutine

——represents the instruction execution sequence

Suppose you did not use subroutines; the instruction sequence needed to perform 32-bit, binary
addition would have to be repeated every time program logic specified 32-bit, binary addition.
The program would now appear as follows:

Program Memory Used By Main Program

Program Memory Used By 32-Bit, Binary Addition

Most programs, whether they are written for minicomputers or microcomputers, eventually
become nothing more than a large network of calls to subroutines. Providing the importance of
subroutines in all microcomputer programs is accepted at face value, you need not understand
any more about subroutines at this point. However, let us consider what happens when a
subroutine is called, and how program logic handles a return from a subroutine.

The PDP-8 minicomputer, and a number of other old minicomputers use the first
memory word of a subroutine as the location where the return address is to be
stored. For example, suppose our 32-bit, binary addition subroutine instructions occupy memo-
ry locations 4C2,5 through 4EQ,¢. The PDP-8, being a 12-bit minicomputer, stores only 12-bit ad-
dresses. Memory word 4C2,4 is the first word of the subroutine, and must be left empty. If the
subroutine is called from memory location 72A,, the following sequence of events occur:
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1) The current contents of the Program Counter are stored in memory location 4C2 6.
2} The address of the first subroutine instruction, 4C3 ¢, is loaded into the Program Counter.
3)  Program execution proceeds at the instruction stored in memory location 4C3¢.

This may be illustrated as follows:

Before Call After Call

Subroutine Subroutine
? 04C2 72C 04C2
04C3 04C3
04C4 04c4
04C5 04C5
04C8 04C6
04C7 04C7

| I !

1 | . ! |

Calling Program Calling Program
0728 0728
pC 0729 PC 0729
CALL 072A CALL 072A
402 0728 4C2 0728
a72C Qo72¢
072D 0720
072E Q72€E
072F Q72F
0730

The last instruction executed within the subroutine must be SUBROUTINE
a return instruction. This instruction moves the address (72C,e) RETURN
stored in the first word of the subroutine {at 04C2,¢) back into the Pro-
gram Counter, thus causing program execution to continue at the instruction following the
subroutine call.

This scheme for calling subroutines obviously cannot work in a microcomputer ap-
plication, since the subroutine is going to be stored in read-only memory: this being
the case, the return address cannot be stored in the first word of the subroutine.
Microcomputers store subroutine return addresses in the Stack. The 32-bit binary addi-
tion subroutine call would be executed as follows:




Before Call After Call

Subroutine Subroutine
g 04C2 04C2
043 - 04C3
04c4 04c4
04C5 04c5
048 04C6
04C7? 04C7
1 | 1
s ! I
Calling Program Calling Program
0728 0728
0729 0729
CALL 072A CALL 072A
pC | 072D ] 04 0728 PC 04C2 04 0728
sp [ _ocas | 2 o72¢ P 2 or2¢
072D 072D
072€ 072€
072F 072F
| Stack ] Stack |
| | ] . |
21 0C40 21 0c40
4A 0ca1 aA ocan
62 0ca2 \ 62 0C42
2 0C43 Top of stack 07 0C43
? 0C44 \ 2D 0Ca4
? 0c4s 0C45

in the above illustration, note that 8-bit memory words are assumed. Since addresses are all 16-
bits long. two memory words are required to store each address.

In order to return from a subroutine, it is only necessary to pop the top two bytes of the Stack into
the Program Counter. Execution will then proceed with the instruction following the call to the
subroutine.

NESTED SUBROUTINES
AND USE OF THE STACK

A nested subroutine is defined as a subroutine which has been called by another
subroutine.

There is nothing at all unusual about one subroutine calling another. In | RECURSIVE
fact, subroutines are frequently nested to a level of five or more. There are | SUBROUTINES
even certain mathematical routines in which the maost efficient way to
write the program is for the subroutine to call itself. A subroutine that can call itself is re-
ferred to as a recyrsive subroutine.

So long as the Stack is being used to preserve return addresses, subroutines can be
nested in any way, or can call themselves; and providing the return path follows the
call path, exactly, the correct return address will always be at the current top of the
Stack.

Were this book a programmer’'s guide, we would now prove the above statement with extensive
illustrations. However, in order to understand microcomputer concepts and microcomputer pro-
gramming. you can take at face value the fact that the Stack will insure that the return path is the
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exact inverse of the subroutine call path. Should you still be curious, you can prove this for your-
self by defining a number of subroutines located in various areas of ‘memory. Arbitrarily select
locations within subroutines where calls to other subroutines exist. Draw a Stack on a piece of
paper, and for each call perform a push of the return address. For each return, pop the return ad-
dress into the Program Counter. You will find that you come out of nested subroutines in exactly
the same sequence as you entered them, however complex the subroutine call sequences may
be.

INDIRECT ADDRESSING

An INDIRECT ADDRESS specifies a memory word which is assumed to | INDIRECT
hold the required direct address. ADDRESS

Memory

XX Jump indirect object code
v Address XXYY provided by
Jump instruction
| I
| |
The first of these two memaory XXYY AA
bytes has address XXYY. and
XXYY +1 BB
the two bytes contain AABB.
' |
! |
This memory byte has the
memory address AABB. and is AABB
the addressed memory
location.
For indirect addressing, the effective address is given by the equation: INDIRECT
_ ADDRESS
. EA = boav) COMPUTATION
where:

EA stands for Effective Address
[] signifies the contents of the memory word whose address is enclosed by the
brackets.

A PAGED COMPUTER’S
INDIRECT ADDRESSING

Indirect addressing is an absolute necessity on a paged computer, since it is the only
way a program can access a memory location outside an instruction’s own page.
Thus. on a paged computer, the direct address instruction:

LMA  XXYY
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must, if XXYY is beyond the instruction’s page, be replaced by the indirect address instruction:

LMA  *HERE

HERE DA XXYY

In the LMA (Load Accumulator) instruction, HERE provides the address of the indirect address
memory word, and “'*" specifies indirect addressing. Memory location HERE contains an address
XXYY which becomes the effective memory address.

With an absolute, paged microcomputer, an instruction with indirect addressing
will only occupy two bytes. The effective memory address is now computed as follows:

Memory
. Any indirect instruction’s
Memory address of instruction ___g. PPQQ L Object code
code bytes PPOQ +1 YY |- Address within page provided
by instruction
|
| 1
l
The first two bytes, onthe g, PPYY AA
same page. holding the PPYY +1 BB

required memory addresses

This memory byte, which can
AABB be anywhere in memory, has
the memory address AABB,
and is the addressed memory
location.
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The PDP-8, being a 12-bit minicomputer, uses the following variation of paged, in-

direct addressing:

These three bits
identify the
instructon.

12-bit

memory

address of instruction. a and b

are binary digits. aaaaabbbbbbb

These two bits must =]

both be 1 to specify
indirect address on
current page.

12-bit
memory
address of word, on same
page where indirect address is
stored. a and n are binary
digits.

aaaaannnnnnn

POR

The PDP-8, and any other paged computer that has a base
page, will use a large part of the base page to store ad-
dresses; these addresses will be referenced indirectly. For ex-

Memory

These seven bits provide an
address within the page.
Each n represents a binary
digit.

[ eI o o ]n[n]n

An indirect addressing

instruction

PQR

This 12-bit word has the

‘hexadecimal address PQR.
This is the indirectly
addressed memory word.

INDIRECT VIA
BASE PAGE

ample, suppose in the above illustration the object code at memory location aaaaabbbbbbb is
H10nnnnnnn, instead of being Hli1innnnnnn. Now the address stored in memory location
00000nnnnnnn would be chosen, not the address stored in memory location aaaaannnnnnn.
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Another variation of indirect addressing sets aside certain INDIRECT AUTO
memory locations as auto increment or auto decrement foca- INCREMENT
tions. For example, the PDP-8 minicomputer sets aside memory loca- AND

tions 008,46 through O00F . on the base page. as auto increment loca- DECREMENT

tions. If an address is stored in any auto increment location, then the ad-
dress will be incremented whenever it is referenced indirectly.

With reference to the most recent.illustration, if @aaaannnnnnn were 000000001000 (i.e., 008,),
then after the indirect addressing instruction had executed, memory location 008, would contain
PQR + 1: on the next execution of the indirect addressing instruction, POR + 1 would be the
effective memory address, not POR.

An auto decrementing indirect address would have generated POR—1 rather than PQR+1.

Observe that the PDP-8 base page must be implemented in read-write memory if addresses
stored in the base page are to change.

PROGRAM RELATIVE,
INDIRECT ADDRESSING

A computer that uses program relative, direct addressing can also have program
relative, indirect addressing. This is what happens:

Memory
Memory address of Any indirect instruction’s
instruction code bytes._____ 5. PPQQ ¥ object code
PPQQ +1 YY _[*®— Displacement address
provided by instruction
|
i ‘I Yy
These two bytes contain
* the required memory
address. ——(PPQQ+1)+YY AA
(PPQQ+1)+YY +1 BB
|
! [
I
AABB This memory byte, which can
be anywhere in memory, has

the address AABB, and is the
addressed memory location.



INDIRECT ADDRESSING —
MINICOMPUTERS VERSUS MICROCOMPUTERS

In the world of minicomputers, even if the minicomputer’s direct addressing is not
paged, indirect addressing is a great convenience since it allows one Load or Store in-
struction to access a number of different memory locations, depending on the cur-
rent contents of the indirect memory address word. Consider the following example:

Memory
Indirect addressing instruction
object code
XX Address XXYY provided by
YY indirect instruction

XXYY
These two memory bytes contain  xxyy +1
the effective address.

AABB
|
|
These are the memory bytes that
may be addressed. »ppOQ
|
|
RRSS

Why would you want to change the indirect address AABB to PPQQ or RRSS?

Many minicomputers are time-shared. This means that a single minicomputer may be executing
many programs, attending to each one for a few milliseconds before going on to the next. Each
program will use parts of memory to store programs and data that are needed for immediate ex-
ecution, while the bulk of programs and data will remain on disk. A program or data table may oc-
cupy completely different areas of memory on each re-execution. This is because the area of
memory that is free for use may be impacted by totally unrelated programs that were executing in
preceding milliseconds by the time-sharing system. Variable indirect addressing is one of
the ways in which minicomputers are able to cope with the fact that programs and
data tables may occupy different areas of memory from one execution of the pro-
gram to the next. It is only necessary to change a few addresses, such as AABB. in order to
change the location of a data table or a program. While this justification for indirect ad-
dressing makes a lot of sense in complex minicomputer applications, it makes ab-
solutely no sense in microcomputer applications. When an entire microcomputer
system, complete with memory, costs a hundred dollars or less, it will be cheaper to give each
user his own CPU and memory, rather than go to the extra programming expense required to
share the use of such a low-cost item as a microcomputer.
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Non-time sharing applications can also make effective use of variable indirect ad-
dressing. For example, a single data area may be used by a number of data tables of variable
length. Consider a simple telecommunications application. Data is arnving over a telephone line at
some random rate; as the data arrives, it is stored in read-write memory. At fixed intervals, a
microcomputer program is executed to process the most recent chunk of raw data. Observe that
each time the microcomputer program is executed, the data on which it must operate will reside
in a different area of read-write memory. If the microcomputer program references read-write
memory via indirect addressing, then by simply loading the new beginning address of the data
area into the indirect address space, the microcomputer program can access the next segment of
data — wherever it may be:

Memory

Indirect addressing instruction
/object code

XX Address XXYY provided by
YY indirect instruction.

instructions, all of which access the
same data.

One of many indirect addressing l

These two memory bytes contain XXYY
the currently effective address. XXYY +1

Start of data area

processed data

Raw data currently begins
here. Store this address at
XXYY and XXYY +1.

Of course, XXYY and XXYY+1 must be read-write memory location.



A microcomputer that has only implied and direct addressing would have to simulate
indirect addressing to perform the operations described above. This could be done
using three instructions for each indirect addressing instruction as follows:

Memory
Load direct into high order
L~
byte of Data Counter
XX f XX YY
vy rom

l&— | 0ad direct into low order byte
XX }\ of Data Counter
M from XXYY +1

M~

Implied addressing instruction
object code

XXYY
XXYY +1

INDEXED ADDRESSING

A number of microcomputer manufacturers describe implied memory addressing as
indexed addressing: the two are similar but they are not the same.

An indexed address is the sum of a direct and an implied address. This may be il-
lustratred as follows:

Memory

Data Counter Indexed addressing
instruction code

XXYY. AA Base address, equivalent to

BB direct address of direct
addressing instruction

| |
| I

XXYY +AABB = La——This is the addressed memory
location




When used as illustrated above, the Data Counter is called an In- | INDEX
dex register. Some minicomputers do not have index registers, or in- | REGISTER
dexed addressing; most do. Minicomputers that do have indexed ad-
dressing may have from 1 to 15-index registers. 16-bit minicomputer indexed addressing may be
ilustrated as follows, for long instructions:

16-Bit
Memory

Index
Register

XXYY /indexed addressing instruction

code
/ AABB |€— Base Address
+

XXYY +AABB =—————pp] [®&—-This is the addressed memory
location

18-bit minicomputer indexed addressing may be illustrated as follows for short instructions:

16-Bit
Memory

Indexed addressing instruction
Index code
Register -

IBB l€— Base Address

XXYY + 00BB ———> This is the addressed memory
location
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The index register derives its name from the fact that its contents is likely to change (for example,
while it indexes an area of memory being treated as a data table). This may be illustrated for a 16-

bit minicomputer as follows:

Index
Register

AABB —»

<
S

16-Bit

Memory

/ Indexed addressing instruction
code

AABB [——Table Base Address

€—First memory location for data

table

DISP +AAEE —p]

«— This is the currently addressed

memory location

Indexed addressihg may be combined with indirect addressing, and this

gives rise to two possibilities; the index may be applied to the base ad-
dress, or to the indirect address. When the index is applied to the base address. we talk of pre-in-
dexed addressing. This may be illustrated as follows:

16-Bit
Memory

Pre-indexed addressing

Index )
Register A/ instruction code
XXYY I AABB [€——Base Address
\ Ry |
| |
i
XXYY+AABB =¥ PPQQ f&—This is the memory location

PPQQ

which contains the indirect

address

This is the addressed memory
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For pre-indexed addressing, the effective address (EA) is given by the | EFFECTIVE
equation: ADDRESS

EA = [BASE + INDEX|
The square brackets denote “contents of . In the above illustration:
EA = [AABB + XXYY] = PPQQ

Suppose the index register contains.213A,¢ and the base address is 413C. the effective ad-
dress is given by:

EA = [413Cys + 213A] = [62761¢]

Therefore the effective address is the contents of the memory word with the address 627616

When the index is applied to the indirect address, we talk of | POST-

post-indexed addressing. This may be illustrated as follows: INDEXING
16-Bit
Memory
Index Post-indexed addressing
Register /instruction code

,{ AABB |——Base Address
)

AABB PPQQ ~&—This is the memory location
which contains the indirect
address

i I

XXYY +PPQQ—3 €——This is the addressed memory
location

For post-indexed addressing. the effective address (EA) is given by the | EFFECTIVE
equation: ADDRESS

EA = {BASE] + INDEX
Again the square brackets denote “contents of.” In the above illustration:
EA = [AABB] + XXYY = PPQQ + XXYY

Again suppose the index register contains 213A6 and the base address is 413C¢; the effective
address is given by:

EA _ [413Cie] + 213A4
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Therefore the effective address is the contents of the memory word with address 413C1q. plus
213A4g.

MICROCOMPUTER INDEXED ADDRESSING

An 8-bit word size is the feature of microcomputers which dictates how much index-
ed addressing, if any, will be implemented.

Let us begin by looking at indexed addressing in-its simplest form. For an 8-bit
microcomputer, this may be illustrated as follows:

Memory
Index Indexed addressing
Register / instruction code
AA
XXYY /’ s '<—Base Address
| |
_\‘ I ' i
XXYY +AABB le— This is the addressed
memory location

Clearly there is some redundancy in indexed addressing, as illustrated above.
XXYY + AABB cannot sum to more than FFFF g, since this is the largest value that a 16-bit ad-
dress can acquire. Any valid indexed address can therefore be rewritten as foilows:

Memory
Index
Register r€—Indexed addressing
XXYY BB \mstructlon code
+ AADO Base Address
' |
! I
+
XXYY +AABB —>» l— This is the addressed
emory location

This is the effective address:

XXYY + AACO + 00BB
= XXYY + AABB

EA
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We have saved a byte in our indexed addressing instruction, and given up nothing. In terms of in-
dexing data tables, this representation of indexing may be ilfustrated as follows:

index
Register

AABB + 00YY —~

Memory

r<€— Indexed addressing

BB

\instruction code

Base Address

AABB —3»-

|<€&—First memory location

for data table

~&——This is the currently addressed

memory location

Since we have a 16-bit index register, but only an 8-bit memory word, what we are doing in
effect, is creating the table base address out of the index register high order byte, plus the base
address byte. The index register low order byte becomes the table index.

N

Effective index

index Reg|ster:\

Effective base address —__|

LG NN

7

i/% [&———— Base Address byte

In the world of microcomputers, straightforward indexed addressing is rarely pre-
sent. This is because we are dealing with an 8-bit instruction code, and if we try to specify too
many addressing options, we will quickly run out of bits.
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Chapter 7
AN INSTRUCTION SET

We are now ready to create a hypothetical instruction set. The instruction set we are
now going to create will not copy any existing microcomputer’s instruction set.
Rather, it will contain features representative of all of them; what we must do is
justify each feature.

CPU ARCHITECTURE

The first prerequisite, before we can discuss individual instructions, is to select the
number and type of registers, plus the number and type of addressing modes that
our hypothetical miocrocomputer will have. We will start with registers.

We cannot simply select a large number of registers — more than NUMBER OF
enough for any situation. Remember, every register must become chip | REGISTERS
logic, using up limited real estate on the CPU chip; also. if we have many

registers. we will use up many instruction code bits, simply identifying which register is to be
referenced. Therefore we must carefully justify every single register we elect to have.

We are going to select two Accumulators {AO and A1). Having two Accumulators,
rather than one, simplifies 16-bit data operations, since the two Accumulators can be visualized
as the upper and lower bytes of a single 16-bit unit:

6 5 4 3 2 10 7 6 5 4-3 2 1 0.—BitNo

CTTIITT1] [TLIIIT]

15 14 1312 11 109 8 7 6 5 4 3 2 1 0Oa16-Bit
Representation

16-bit data operations are seen frequently enough to justify having two Accumulators.

Having two Accumulators is also useful when data from two tables must be read and processed
in parallel; this is easier and faster with two Accurnulators, which, in effect, provide two indepen-
dent channels for data transfer.

Wil two Accumulators be sufficient? Some microcomputers have more DATA

than two Accumulators, or equivalent registers, but the additional COUNTERS
registers are used as Data Counters or memory address registers of
some form. We are going to provide our microcomputer with three 16-bit Data
Counters (DCO, DC1 and DC2); therefore, we do not need more than two Accumulators, or
equivalent registers

Why have three Data Counters? The answer is that it greatly simplifies processing data out of ta-
bles. Frequently data from two source tables are combined in some way (the most obvious exam-
ple is multi-byte addition) and the result is stared in a third table. Microcomputers with less than
three Data Counters, or equivalent address registers must shuffle addresses between temporary
storage in memory, or must otherwise circumvent the limitations of having only one {or two) Data
Counters.



Consider the simple case of multibyte addition. Having three Data Counters, this operation, and
similar operations, are easily handled as follows:

Memory

XXXX

DCo XXXX
DC1 YYYY  f—mvyYY
DC2 7227 —

2777

Original DC contents;
these addresses will all
be incremented after
every table access

Having two Data Counters, we would have to move one of the source data buffers (beginning at
either XXXX or YYYY) into the answer buffer, then add as follows:

Memory

XXXX
YYYY
DCO YYYY XXXX DCo
DC1 7777 Step 1 + 7727 DC1
27277 Z/ Step 2

A microcomputer with only one Data Counter would have to store the three table addresses

somewhere in read-write memory. then load each address into the Data Counter before access-
ing each table.




A microcomputer with indirect addressing could store the three table addresses in read-write
memory, then access tables indirectly via the three addresses:

Memory
Address

i Base Page

0010 Y74
0011 Y4
0012 YY These are original addresses; they
0013 YY will be incremented after every
0014 XX table access.
0015 XX
i i
14 Load indirect
via 0014
12 Add indirect
via 0012
10 Store indirect
! ' via 0010
XXXX )

YYYY 1) -+

777
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We will give our microcomputer a Stack Pointer (SP) and a Program |CPU
Counter (PC). Our complement of registers looks like this: REGISTERS
SUMMARY
8-bit Accumulator ACO
8-bit Accumulator AC1
16-bit Data Counter DCO
18-bit Data Counter DC1
16-bit Data Counter DC2
18-bit Stack Pointer SP
16-bit Program Counter PC

STATUS FLAGS

In Chapter 2 we described status flags. and how they are used. We will provide our hypothetical
microcomputer with the four status flags Z (Zero), C (Carry). O (Overflow) and S (Sign).

ADDRESSING MODES

A microcomputer’s addressing modes will be influenced by the number and type of
registers which have been selected.

For example, a microcomputer with only one Data Counter is likely to provide indirect addressing

as an alternative means of simultaneously accessing a number of data areas; this was illustrated in
our discussion of Data Counters.

Since we have three Data Counters, we will save on instruction code bits, and CPU chip logic, by -
having no indirect addressing: rather, we will include auto increment and auto decrement

features. Instructions that reference memory will be divided into two categories as
follows:

1) Load and Store instructions. Because they are frequently used, these two instructions
will have a complete, and flexible set of addressing options.

2) Other memory reference instructions, being less commonly used, will have a more
limited memory addressing ability.

The complete memory addressing capability offered by the Load and Store instruc-
tions may be represented as follows:

I Address specification bits for a Load or Store instruction.

76543210

Ny
00 use Data Counter DCO
01 use Data Counter DC1
10 use Data Counter DC2

11 direct addressing. The next two bytes provide the direct
memory address

L IfbitsOand 1are 11, these two bits are unused. (f bits 0 and 1
are not 11, then interpret bits 2 and 3 as follows:

00 specifies simple, implied memory addressing

01 increment contents of specified Data Counter at conclusion
of instruction

10 decrement contents of specified Data Counter at conclu-
sion of instruction

11 increment and skip feature (described with Load and Store
instructions)



Memory reference instructions, other than Load and Store, will offer this limited
subset of addressing options:

Address specification bits for memory reference instructions
,—:—- other than Load and Store
76543210

L 00 Use Data Counter DCO  Simple, implied memory

01 Use Data Counter DC1  addressing only

10 Use Data Counter DC2

11 Direct addressing. The next two bytes provide the direct
memory address.

A DESCRIPTION OF INSTRUCTIONS

There are two competing perspectives which we must maintain while evaluating the
instructions that are to constitute our microcomputer’s instruction set. First, we
must decide what instruction types are vital, very useful, or simply desirable; next,
we must select instructions that use the 256 possible combinations provided by an
8-bit instruction code; we cannot have more than this number of options.

In order to balance our two perspectives in the following discussion, we are going to
create a complete, but hypothetical, microcomputer instruction set. This means that
we must justify each instruction, or instruction type, and we must specify the object
code pattern which is to be interpreted by the CPU Control Unit as identifying the
specified instruction.

INPUT/OUTPUT INSTRUCTIONS

A microcomputer system would be useless if it did not provide means for receiving data from,
and transmitting data to external devices; this is input/output and is specified via input/output
(I/0) instructions.

An input/output instruction needs to specify three things:

1) Is the instruction reading data from an external device (input), or is it transmit-
ting data to an external device (output)?

2) As we discussed in Chapter 5, most microcomputer systems have, or at least
allow, more than one port through which data can be transferred between exter-
nal devices and a microcomputer system. We must identify the 1/0 port via
which the input or output operation is to occur.

3) What is the source (for input) or destination {for output), within the microcom-
puter system, for data being transferred via 1/0 instructions?

Input/output operations are so frequently used in microcomputer applications, that
in order to save memory, it is a good idea to include a few single-byte 1/0 instruc-
tions.

We could use just four of the 256 object code options, two for input (one for each Accumulator
as the destination), the other two for output (one for each Accumulator as the source), then
specify one of 256 possible 1/0 ports in an immediate data byte to follow:

Byte 1: Input or Output instruction.

Byte 2: Using'this 1/0 port.
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This scheme for 1/0 instructions is better:

76543210 Bit No.

BagERNES!
I

/ 00 specifies 1/0 port O

01 specifies 1/0 port 1

10 specifies 1/0 port 2

11 specifies 1/0 port in the next program byte
0 specifies input

1 specifies output

——————_ An /O instruction specified

—

We have used up eight object code options, without specifying which Accumulator
is involved in the data transfer. These are the eight object code options used by /0 instruc-
tions:

00001000  Input via 1/0O Port O

00001001 Input via 1/0 Port 1

00001010  Input via I/0 Port 2

00001011 Input via I/0 port addressed by next byte
00001100  Output via 1/O Port 0

00001101 Output via 1/0 Port 1

00001110  OQutput via i/0 Port 2

00001111 Output via 1/0 port addressed by next byte

it is going to take an additional bit to specify one of the two Accumulators as the
data source or destination in 1/0 instructions. The eight object code options illustrated
above would have to be repeated (perhaps with bit 4 set to 1) in order to represent two sets of
1/0 instructions, one set accessing Accumulator AQ, the other set accessing Accumulator A1, As
aresult, 16 object code options would be consumed by 1/0 instructions; and that is unnecessarily
extravagant. Instead we will stipulate that Accumulator AQ will always be the
source or destination of data for 1/0 instructions.

This preferred use of Accumulator A0 will occur frequently in PRIMARY
our instruction set, since it is an easy way of reducing the ACCUMULATOR

number of object code options used up by any instruction
type. By making one Accumulator always more accessible, rather than spreading pretference
between the two Accumulators, the programmer can think and program in terms of a primary
Accumulator (AD) and a secondary Accumulator (A1)

We will use the following mnemonics for our 1/0 instructions: INPUT SHORT

For Input Short:
INS P

P is the instruction operand, and must be 0. 1 or 2 to specify one of the three /O ports allowed

by a single byte I/0 instruction. The Assembler will flag any other vatue in the operand field as il-
legal.

Next. for Input Long; INPUT LONG

IN P



This time P may have any value from O through 255. A two-byte instruction will be generated as
follows:

010]0j0f 1{0} 1]1 Input to AQ

Via this 1/0 port.

For Output Short: . OUTPUT SHORT

ouTs P

This is identical to the Input Short instruction, except that data will be output from Accumulator
AO. through the specified 1/0 port (0. 1 or 2 only).

And for Output Long: OUTPUT LONG

ouT P

This instruction ts identical to the Input Long instruction, except data will be transmitted from Ac-
cumulator AO to an external device via any 1/O port from O through 255

By making 1/0 instructions access only Accumulator AQ as the source or destination for a data
transfer, we have decided that it is more important to specify a limited number of ports within a
one-byte /0 instruction, rather than allow either of the two Accumulators to be the data source
or destination.

Referring to the shower temperature controlling example, let us assume that tem-
perature readings arrive through 1/0 Port O, while controls are output to the hot
water valve via I/0 Port 1. 1/0 Port 2 is used as a common status port for inputs
and outputs. Information at these 1/0 ports will be interpreted as follows:

I/0 Port 0: A millivoitage. ranging from O mv through 255 mv. Temperature, in °F, may be ap-
proximated as follows:

°F =30 + 0.45 mv.

/O Port 1: A signed binary number, specifying the hot water valve must be opened (positive) or
closed (negative). The amount of valve movement will be proportional to the ab-
solute value O through 127.

1/0 Port 2. Bits of this port will be interpreted as follows:

1/0 Port 11/0 Port O

D e i

765643210 Bit No.

I |||||O| I |O||I

AAA 4\ { é 1 =New data at I/O Port 0

0 = No new data at 1/O Port O

1 = New data has been read
0 =New data has not been read

Not.Used

1 = New data at 1/0 Port 1
0 =No new data at I/O Port 1

1 = Retransmit last data value
0 = Last data value read and OK

1 = Ready to receive data at |/0 Port 1

0 = Not ready to receive data at I/0O Port 1

Not Used

In the Port 2 illustration, | represents bits input by an external device: O represents bits output by
the CPU.




MEMORY REFERENCE INSTRUCTIONS

If data arriving from a temperature sensor arrives in multibyte units, each data byte that is loaded
into AO by an input instruction must immediately be stored in read-write memory. Data output to
the hot water controller must be read from memory, loaded into AQ, then output via an output in-
struction. The data output to the hot water controller depends on the data input from the tem-
perature sensor; in the process of computing the data to be output, any program will have to con-
stantly reference data in memory — to load. store, add, perforrn logical operations, etc.

The basic architecture of any computer, mini or micro, provides a very limited data storage
capacity in CPU registers, and a {relatively) enormous data storage capacity in memory external to
the CPU. This makes memory reference instructions the next most vital, after /O instructions.
Recall from Chapter 5 that some microcomputers treat 1/O instructions as a subset of memory
reference instructions, by assigning specific memory addresses to 1/0 ports.

As might be expected, the two most commonly used microcomputer memory reference
instructions merely move data to or from memory; these are the Load and Store in-
structions.

A Load instruction moves data from a memory location to an Accumula- LOAD

tor.
A Store instruction moves data from an Accumulator to a memory loca- STORE
tion.

These being the two most commonly used memory reference instructions, we will
spend the bits needed to include in the Load and Store instruction very flexible ad-
dressing modes. ’

Load and Store instruction object codes will appear as follows:

765643210 Bit No.

Ny
A
¥ |
00 Use Data Counter DCO
01 Use Data Counter DC1
10 Use Data Counter DC2

11 Direct addressing. The next two bytes provide the direct
memory address.

If Bits O and 1 are 11, these two bits are unused. If bits 0 and 1

are not 11, then interpret bits 2 and 3 as follows:

00 Specifies simple, implied memory addressing.

01 Increment contents of specified Data Counter at conclusion
of instruction.

10 Decrement contents of specified Data Counter at conclu-
sion of instruction.

11 Increment and skip feature

0 Reference Accumulator AQ
1 Reference Accumulator ‘A1

0 Load
1 Store

—_

_—

——— A Load or Store instruction



Let us now look at the complete addressing capabilities offered by the Load and
Store instructions, starting with the simplest.

After describing what the addressing modes are, we will justify each one.

A Load or Store instruction with direct addressing will have 1's DIRECT

in bits 0 and 1, and the direct address will be provided in the two bytes ADDRESSING
that follow. Observe that bits 2 and 3 are not used for direct addressing;
they must, however, have a definite value. We will therefore specify that bits 2 and 3 must both
be O for a direct addressing Load or Store instruction; these instructions will now have the follow-
ing object code:

Byte 1 oj1)0 ojoj111 Load into Accumulator O or 1

Byte 2 the contents of the memory location addressed by these
Byte 3 two bytes

Byte 1 o ojo1 1{1 Store the contents of Accumulator O or 1

Byte 2 into the memory location addressed by these two bytes
Byte 3

The following object codes have nothing to do with Load or Store instructions:

76543210 Bit No.

oft] [ 1]

Direct addressing if bits 2 and 3 are both 0
Not a Load or Store instruction if these two bits are 01, 10 or 11.

These two bits can have any value and not represent Load or
Store instruction if bits 2 and 3 are not both 0.

Normally specify a Load or Store instruction.

There are 64 object code combinations resulting from | NUMBER OF
01XXXXXX, where X may be O or 1; these are the Load and | LOAD AND
Store instruction object codes. Twelve of the combinations do | STORE

not represent Load or Store instructions, as illustrated above (3 | INSTRUCTIONS

combinations of bits 2 and 3, times 4 combinations of bits 4 and 5, equal
12 combinations). Therefore, there are 52 variations of the Load and Store instructions.

Load and Store instructions with implied memory addressing can | IMPLIED
have any of the following object codes: ADDRESSING

76543210
|O|1| |OIO'I|

7Y}
‘r 00 Address implied by DCO

01 Address implied by DC1

10 Address implied by DC2

Simple. implied memory addressing

0 Reference Accumulator AO

1 Reference Accumulator Al

0 Load

1 Store

Load or Store instruction

—

7-9




The effective memory address for the Load or Store instruction is the contents of Data Counter
DCO, DC1 or DC2. whichever has been specified by bits 0 and 1.

Introducing the auto increment and auto decrement feature is | AUTO

quite easy to understand; the auto increment feature says that the im- | INCREMENT
plied memory address. that is. the contents of the specified Data Counter,
will be incremented by 1 at the conclusion of the memory reference in- | AUTO
struction. Conversely. the auto decrement feature specifies that the Data DECREMENT
Counter contents will be decremented by 1 at the conclusion of the in-
struction.

The object code for an auto increment instruction will differ from the implied addressing
equivalent object code only in bits 3 and 2, which will be 01: the equivalent auto decrement in-
struction will have 10 in bits 3 and 2.

Increment and skip, specified by having 1's in bits 2 and 3, is INCREMENT
not a common microcomputer feature. We are going to create | AND SKIP
Load and Store instructions with the following format:

Load or Store, then increment contents of the Data

765 4 3210 Counter specified by bits O and 1; then check contents
Byte 1 ol 111 d of Data Counter.
Byte 2 If the last 6 bits of the Data Counter contents are

000000, increment the Program Counter to bypass (and
ignore) this byte. If the last 6 bits of the Data Counter
have any other value, treat this byte as a signed binary
number, to be added to the Program Counter contents,
forcing a Branch.

The most effective way of illustrating the necessity for the various addressing
modes is with short program sequences. Let us therefore first describe the instruc-
tion mnemonics which will be used for the Load and Store instructions.

Load and Store Direct will use these mnemonics: . LOAD DIRECT

LRA ADDR Load direct into AQ STORE DIRECT
LRB ADDR Load direct into A1

SRA ADDR Store direct from AQ

SRB ADDR Store direct from A1

ADDR is any symbol representing a memory location from which data will be read or to which
data will be written. We use the letter A to represent AO and B to represent A1; we could use the
digits 0 and 1, but it is too easy 1o confuse 0 and O. and 1 with I: therefore, use of 0 and 1 within
instruction mnemonics is unpopular.

Load and Store Implied will use these mnemonics: LOAD IMPLIED
LMA  DCX Load into AO from the memory location STORE IMPLIED
' addressed by DCX
LMB DCX Load into A1 from the memory location
addressed by DCX
SMA  DCX Store the contents of AQ into the memory location
addressed by DCX
SMB  DCX Store the contents of A1 into the memory location

addressed by DCX

DCX specifies one of the three Data Counters and therefore must be DCO, DC1 or DC2.
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The Load or Store with Auto Increment or Auto Decrement instructions
will be identical to Load/Store Implied, as described above, except that
the specified Data Counter contents will be incremented or decremented.
We will use the instruction mnemonics LNA and LNB for Load with Auto
Increment, LDA and LDB for Load with Auto Decrement, SNA and SNB
for Store with Auto-increment and SDA and SDB for Store with Auto
Decrement.

Load and Store instructions with Auto Increment and Skip will be
specified by the following instruction mnemonics:

LSA
LSB
SSA
SSB

DCX LABEL
DCX,LABEL
DCX,LABEL
DCX.LABEL

Load into AO
Loadinto A1

Store contents of AO
Store contents of A1

LOAD/STORE
WITH AUTO
INCREMENT

OR DECREMENT

LOAD/STORE
WITH AUTO
INCREMENT
AND SKIP

DCX identifies the Data Counter holding the implied memory address; it must therefore, be DCO,
DC1 or DC2
LABEL is a symbol identifying the instruction which will be executed next if, after DCX is incre-
mented, the last six binary digits are not all zeros.

In order to demonstrate the power of the Load and Store instructions, let us look
at a simple problem which moves data from one buffer to another. Assuming that the
starting addresses of the source and destination buffers are in Data Counters DCO and DC1, and
assuming that the buffer length is stored in Accumulator A1, the problem may be illustrated as

follows:

A0

Al

27

DCO

XXXX

DC1

YYYY

DC2

Data
Memory
XXXX
zz 4! ' Move raw data input
: ! by thermometer
! 1
) !
yyyy )
77 1 . . V' —— To data buffer where data is held
M ‘ while being processed
L b

XXXX is the beginning address of the input data buffer.
YYYY is the beginning address of the output data buffer.

ZZ is the length of each data buffer.
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The following instruction sequence will perform the required data move:

LOOP  LMA  DCO  Load next input data byte
SMA  DC1  Store in next destination buffer byte
Increment DCO contents
Increment DC1 contents
Decrement A1 contents

If A1 contains 0. branch to LOOP

Instructions which we have not yet described are written out in words, rather than using un-
familiar instruction mnemonics.

Now we will introduce the auto increment feature, and this is what hap- | AUTO
pens to our instruction sequence: INCREMENT

OR DECREMENT
LOOP  LNA DCO  Load next input data byte. JUSTIFICATION

Increment address.
SNA DC1  Store in next destination buffer byte. Increment address.
Decrement A1 contents
If A1 contains 0, branch to LOOP

Two instructions have been removed from the six instruction sequence and two bytes of object
program code have been saved.

Now assume that the destination buffer ends at memory location 08C0g: | AUTO
the last six binary digits of this address are all zeros- INCREMENT
AND SKiP
08C0, = 000010001 1000000 JUSTIFICATION
—
tested
for
auto-skip

We can now compress our data move program to these two instructions:

LOOP  LNA DCO Load next input data byte; increment address.
SSA  DC1.LOOP  Store, increment and skip on end.

These two instructions occupy three bytes. as follows:

()

011{0¢0|0[ 1{0 Load AQ via DCO; increment DCO
afrjrfof 1140 Store AQ via DC1: increment DC1 and skip
1pgtf1§11o Twos complement of 2

—

We norlonger need to hold the buffer length in Accumulator A1. Nor do we need to decrement
the buffer length, or increment memory addresses. After the Store, Increment and Skip instruc-
tiorrinerements-the destination buffer address, it tests the incremented value: if the incremented
value-does not end in six binary zero digits, execution will return to the Load instruction; this two-
instruction loop will be continuously re-executed until the Store, Increment and Skip instruction
does increment the destination address to 08CO0,: at this point the branch will be bypassed and
the instrbiction which immediately follows the above data movement loop will be executed.

A minicomputer programmer would recoil at an addressing scheme such as the auto
increment and skip. The idea that data tables must be placed at memory addresses ending in
six binary zeros poses more problems than it offers advantages.
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While the minicomputer programmer may see the neatness of instruction loops that require no
special end-of-loop logic, problems associated with data relocation would be horrible: if a pro-
gram were to be re-used in another application. or if it were part of a time-sharing system, the
pragrammer would constantly have to worry about ensuring that data tables ended at correct
memory boundaries — or else the program would simply not work.

We return once again to the old minicomputer programmer’s axiom: “Remember
that whatever you do today may impact tomorrow.” But remember that in the world
of microcomputers there is no tomorrow. Whatever you do today becomes a ROM chip and
will never again change. Mapping data tables onto memory address boundaries is only a minor
inconvenience, since memory mapping will be a significant part of every microcomputer pro-
gramming assignment anyway. When the ROM chips that result from your program may be
reproduced thousands of times, you will want to be absolutely sure that your program resides in
the fewest, smallest chips possible.

The auto increment and skip feature offers very significant advantages in a
microcomputer application because it saves on object program bytes, while the
penalty paid — having to map data tables onto address boundaries — is part of a job
that must be done in any event.

We have not yet justified the need for direct addressing instruc- DIRECT
tions. Are they necessary? ADDRESSING
JUSTIFICATION

There is nothing a direct addressing instruction does which could not be

done with an implied addressing instruction; in certain cases, however, direct addressing instruc-
tions use less memory. Consider the buffer length which we were going to load into Accumulator
A1, and then decrement. In the end we eliminated this logic sequence from our data movement
example, but there are going to be many instances in which this type of logic cannat be elimi-
nated. How does the buffer length, or any similar number, get toaded into the Accumulator? A
three-byte direct addressing instruction will do the job as follows:

Program
Memory

01000011} Load direct into AQ

From the memory location with this
address

To AO
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Using implied memory addressing the operation will require four bytes and will temporarily use a
Data Counter as follows:

Program
Memory

Load immediate into DCO

These two bytes

01000000 Load into AO via DCO

This byte
addressed

To AD -—

The three-byte immediate instruction which is needed to load data into a Data Counter is an un-
necessary expense, when it is followed by a single memory reference, such as the one-time load
of an index into another register; as we have seen earlier in this chapter. the three bytes needed
to load an address into a Data Counter result in a great subsequent memory savings, but only if
the address in the Data Counter is going to be re-used many-times.

If @ microcomputer is to have either direct addressing or implied addressing, implied addressing is
the more desirable; for example, the Intel 8008. which was the predecessor of the Intel 8080, has
implied addressing but no direct addressing.

Most programs load single values (such as counters and indexes) into registers frequently enough
to make direct addressing justifiable.

Note that if the counter or index to be loaded Into a register has a value that will never change,
you would use neither direct nor implied addressing to load the value into a register. You would
use immediate addressing:

Program
Memory

Load into AQ
The contents of this byte.




SECONDARY MEMORY REFERENCE
(MEMORY REFERENCE OPERATE) INSTRUCTIONS

Let us now look at memory reference instructions other than Load and Store. In each
case an operation will be performed using the contents of one of the Accumulators,
plus the.contents of an addressed memory location. The result will always be stored
in the identified Accumulator, erasing whatever value had previously been in the Ac-
cumulator {the Compare instruction desoribed below is an exception). The Zero, Sign,
Carry and Overflow status flags will be set or reset to reflect the result of the opera-
tion. For example, the ““Add memory to A1 instruction will add the contents of the addressed
memory location to the contents of Accumulator A1. The previous contents of memory are:not
changed. .

With the exception of the. Store instruction, microcomputer instructions will avoid modifying
memory since that implies the presence of read-write. memory.

ADD
ADD DECIMAL .

SUBTRACT DECIMAL
We will include these secondary memory reference in- | AND
structions: .

OR
76543210 XOR
ol TTT T COMPARE
T‘W ~ . B
00 Use Data Counter:DCO Simple. implied memory

01 Use Data Gounter DC1 addressing only
10 Use Data Counter DC2
11 Direct addressing. The next two bytes provide the direct
memory address.
000 Add binary
001 Add decimal
010 Subtract decimal
011 AND
100 OR
101 Exclusive OR
110 Compare
111 Not Used
0 Use Accumulator AO
Use Accumulator A1

Secondary memory reference instructions

These are the instruction mnemonics we will use:

ABA or ABB Add Binary to AO or Al

ADA or ADB  Add Decimal to AQ or Al

DSA or DSB Decimal Subtract from AO or A1
ANA or ANB AND with AQ or A1

ORA or ORB OR with AO or A1

XRA or XRB Exclusive OR with AO or A1l
CMA or CMB  Compare AQ or Al with memory




The code 10" in bits 7 and 6 specifies that the remaining six bits represent secondary memory
reference instructions. However, only seven of the eight combinations possible for bits 2, 3 and 4
are used for secondary memoary reference instructions. Therefore, only 56 of the 64 bit combina-
tions are, in fact, secondary memory reference instructions.

In each case. the instruction will be written out like this:
MNEM  DCX

where MNEM is one of the mnemonics listed above (e.g.. ADA), and DCX is one of the Data
Counters (DCO, DC1 or DC2).

The direct memory referencing version of the instruction will look like this:
MNEM  ADDR

where ADDR is the direct address.

Here are two examples. The instruction:

ABA  DC1

adds to AQ, uélng binary addition, the contents of the memory location whose address is implied
by DC1. This is the object code generated:

76543210

[ 1{ofoJofofofo[1]
A
ﬁi-"‘Lﬂ\ddress implied by DC1
Add binary
To AQ

This is a secondary memory reference instruction

The following is a direct memory referencing instruction:

XRB  ADDR

The contents of A1 is Exclusive-ORed with the contents of the memory location addressed by
symbol ADDR. These three object program bytes will be created:

This is a secondary memory reference instruction.
Reference A1

Exclusive-OR
(__j_wf—' Direct addressing specified

3
110

These two bytes contain the 16-bit address
represented by the symbol ADDR

Only two of the seven secondary memory reference instructions described above
need any comment.

Add and subtract decimal perform decimal addition or subtraction, using three or
two binary steps, as described for binary-coded decimal arithmetic in Chapter 2.
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We perform decimal subtraction using a separate instruction, since the logic sequence is suffi-
ciently different from a decimal add to make the extra instruction worthwhile.

We do not provide a separate binary subtract instruction, since this is | BINARY
simply a twos complement followed by an add, as described in Chapter 2. | SUBTRACT

Note carefully that the decimal addition and subtraction instructions are | DECIMAL
not the same thing as a decimal adjust instruction. Decimal adjust simply | ADJUST
takes the contents of a register and re-arranges the bits to create the
decimal equivalent of the binary number; this is explained in Chapter 2. A majority of microcom-
puters offer a decimal adjust instruction; a minority offer decimal arithmetic instructions.

The Compare instruction subtracts the contents of the ad- | COMPARE

dressed memory location from the specified Accumulator; the

result of the subtraction is discarded — it is not stored in the specified Accumulator. However,
the Z status bit is set or reset to reflect the result of the subtraction. This is a very useful instruc-
tion since it allows the program execution sequence to be determined by the relative magnitude
of data items.

The Branch on Condition instructions, described later in this chapter, take advantage
of, and are used in conjunction with the Compare instruction.

Are the secondary memory reference instructions necessary? | SECONDARY

This question must be answered two ways: MEMORY
E;:L,i:i,,::ensgssr:;m?s performed by the secondary memory reference rl\lESF1E':lEJg$IE)NS
e JUSTIFICATION

Second, must these operations be performed using secondary memory
reference instructions?

The operations described -— addition, Boolean logic and compare, are such basic steps in any
logic sequence that a microcomputer that did not offer these logic capabilities, one way or
another, would be worthless.

There is, however, no reason why these operations have to be part of memory reference instruc-
tions. For example, it would be possible to load the two operands into Accumulators AO and A1,
then to perform the same operations, register-to-register. Microcomputers which have many Ac-
cumulators, such as the Intel 8080, favor register-to-register instructions over register-to-memory
instructions: microcomputers with fewer Accumulators, such as the Motorola M6800, use
register-to-memory instructions as we have described.

Let us look at a simple example.

Suppose the two buffers beginning at XXXX and YYYY (in the preceding | MULTIBYTE
illustration) each hold a single, multibyte number. The number in the | ADDITION
buffer beginning at XXXX could be added to the number in the buffer

beginning at YYYY as follows:

Initially clear the carry status

LOOP LMA DCO Load the next input byte
ABA DC1 Add binary from answer buffer
SSA  DC1,LOOP Store the result, increment and skip




The above three-instruction program assumes that the buffer beginning at YYYY (this address is
stored in DC1) contains one of the numbers to be added, but at the end of the addition this buffer
will contain the answer. This logic works, since the answer is going to over-store the byte which
‘was just added; therefore, information is destroyed only when it will not be needed in the future.
This may be illustrated as follows:

First Second Source
Source And Destination

etc.

Another three instruction loop can perform a binary addition where the result is stored in a third
buffer, which we will assume is addressed by DC2. The three instructions will look like this:

LOOP LNA DCO Load next augend byte
ABA DC1 Add corresponding addend byte
SSA  DC2,LOOP  Store the resukt, increment and skip

An example of the usefulness of the Boolean secondary memory | BOOLEAN
reference instructions is to test switches for setting changes. LOGIC

JUSTIFIED

Suppose the status of eight switches.are input to 1/0 Port 4: the previous | SWITCH
settings for these eight switches are stored in memory at a location ad- | CHANGE
dressed by the symbol SWITCH. The following instruction sequence iden- TESTS
tifies which switches have changed settings and how the settings have
changed:

IN 4 Input new switch settings

XRA SWITCH Identify changed switches
Save contents of AQ in A1

ANA SWITCH Identify switches that turned on

This is what the above three instructions do:

The first instruction inputs the new switch settings to AQ; suppose these settings are:

01100101



Where O represents an “off” switch and 1 represents an “on” switch.

Suppose the previous switch settings, stored in the memory location identified by the symbol
SWITCH, are:

10101101

Switches 7 and 3 were “on’”, and are now "'off”’. Switch 6 was “off", and is now “on”. Switches
5.4, 2,1, and O have not changed.
The XRA instruction leaves the Exclusive-OR of the old and new switch EXCLUSIVE-OR
settings in AO:
Old Settings: 10101101
New Settings: 01100101
XRA: 11001000 gives changed switches

The changed switches are identified by 1 bits, and are stored in Al.

The AND instruction leaves the AND of the old switch settings, and the
changed switch settings in AQ:

Changed Settings: 11001000
Old Settings: 10101101

ANA: 10001000 gives on-to-off switches.

LOAD IMMEDIATE INSTRUCTIONS,
JUMP AND JUMP-TO-SUBROUTINE

The concept of immediate addressing has been discussed frequently as a means of
loading data or addresses into registers. How vital are immediate addressing instruc-
tions to a microcomputer instruction set?

We cannot use implied memory addressing to load an address into a Data IMMEDIATE
Counter, since implied memory addressing requires a Data Counter to INSTRUCTIONS
already hold an address. Direct addressing could do the job. A base ad- | JUSTIFICATION
dress stored in two memory bytes could be directly addressed. and
loaded into a Data Counter, as follows:

Load direct into DCO

XX
XX

Starting at this address

! X YYYY DCt

XXXX YY
YY




But the above illustration clearly has some redundant bytes; the address being loaded into the
Data Counter could just as easily be stored in the two direct memory address bytes as follows:

Load immediate into DCO

YY

YY YYYY DC1

Immediate instructions are not absolutely vital to a microcomputer instruction set,
but they are certainly a great convenience; we will therefore include eight immediate ad-
dressing instructions: to foad data into the three Data Counters, the Stack Pointer, the Program
Counter (with two variations) or the two Accumulators. These will be either two- or three-byte in-
structions; since the Accumulators are only one byte long., immediate instructions that load data
into an Accumulator will be followed by just one byte of immediate data. The Data Counters, the
Program Counter and the Stack Pointer are all two bytes long; therefore, immediate instructions
that load data into any of these registers will be followed by two bytes of immediate data. The
following object code patterns will specify immediate instructions:

Immediate instruction specified

76543210 Bit No.

[1]0] [ ]

A
T 000 Load immediate DCO
001 Load immediate DC1
010 Load immediate DC2
011 Load immediate SP
100 Load immediate PC (Jump)
101 Load immediate PC (Jump to subroutine)
110 Load immediate AO
111 Load immediate A1

Since there are eight immediate instructions, and there were eight unused object code combina-
tions from within the secondary memory reference instruction group, we use these eight unused
combinations for immediate instructions, as illustrated above.

Special attention must be given to the two instructions which | JUMP

load immediate data into the Program Counter; unlike the other | INSTRUCTION
immediate instructions, these two modify the program
execution sequence; the next instruction executed is going to be fetched from the
memory location whose address was loaded immediately into the Program Counter.
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In its simplest form, this is an Unconditional Jump {(or Branch) instruction:

lost

This instruction will
be executed next.

A Jump-to-Subroutine instruction differs only in that the cur-
rent Program Counter contents must be saved before the new
immediate data is loaded into the Program Counter; since our
microcomputer has a Stack, the Program Counter contents will be pushed

Program
Memory

10111100

Load immediate into PC

41

2A

These two bytes

JUMP TO
SUBROUTINE
INSTRUCTION

onto the Stack (as described earlier in this chapter), before the immediate data is loaded into the

Program Counter:

0401
0402
0403
0404
0405

PC

This instruction wilt

4129
be executed next.

412A
4128
412C
412D

04
05

Stack ~

L «e——Old top of stack

L «——New top of stack

10111101

Jump to subroutine

41

2A

Starting at this address

Most microcomputers’ instruction set descriptions do not include Jump and Jump-
to-Subroutine instructions in the immediate instruction category; instruction logic is,

however, almost identical.




Instruction mnemonics for immediate instructions will be different for | LOAD
Jump and for the straightforward Load Immediate instructions. For Load | IMMEDIATE
Immediate we will use the following mnemonics:

LM R.DATA

R must be A0, A1, DCO. DC1, DC2 or SP. DATA must be a number, or a symbol representing a
number; it must be equivalent to an 8-bit value if B is AO or A1, it must be equivalent to a 16-bit
value otherwise.

The Jump instruction will appear as follows: JUMP

JMP ADDR

ADDR must be the label of the instruction which is to be executed next.

The Jump-to-Subroutine instruction will appear as follows: JUMP TO
SUBROUTINE

JSR SNAME

SNAME must be the label of the first instruction executed within the subroutine.

We will now create a subroutine.

Let us return to the data move program that iflustrated the Increment-and- SUBROUTINES

Skip instruction; written out fully, this program would include additional in-
structions to load addresses into Data Counters, as follows:

BUFA EQU XXXX
BUFB EQU YYYY

LIM DCO.BUFA Load Source initial address

LIM DC1.BUFB Load Destination initial address
LOOP LNA DCO Move data from Source

SSA DC1.LOOP to Destination

The EQU mnemonics represent Assembler Equate directive. EQUATE
ASSEMBLER

Recall that an Assembler directive is not an instruction, and it generates
g DIRECTIVE

no object code: instead it provides the Assembler with information with-
out which the Assembler could not generate an object program.

EQU identifies an Equate directive: this directive tells the Assembler that wherever the symbol in
the label field occurs, the number in the operand field must be substituted. For example, it tells
the Assembler:

“Use the hexadecimal value XXXX wherever you see the symbol BUFA."

We could just as easily rewrite our program as follows:

LIM DCO,XXXX

LIM DC1YYYY
LOOP LNA DCO

SSA DC1,LOOP



The advantage of having the Equate is that the symbol BUFA (or | ASSEMBLER
BUFB) may appear many times within a program. [f the value asso- | DIRECTIVES —
ciated with the symbol changes, all you have to do is change one Equate | THEIR VALUE
in the source program. When you re-assemble the source program, every
reference to the changed symbol will be corrected in the new object program which the Assem-
bler creates.

Without the Equate directive, you would have to find every source program instruction that
references the changed symbol, then you would have to correct each source program instruction,
with no guarantee that you found them all.

To turn the data moving program into a subroutine, all we do is give a | JUMP TO
label to the instruction which is to be executed first. and to add an instruc- | SUBROUTINE
tion which executes a return from the subroutine:

MOVE LIM DCO. BUFA Load source initial address
LiM DC1.BUFB Load destination initial address
LOOP LNA DCO Move data from source to
SSA DC1.LOOP destination
Return from subroutine

The Return-from-Subroutine instruction is described with the Stack instructions; we will ignore
the Return logic for now.

Other programs can call the subroutine with this one instruction:
JSR MOVE

Subroutine MOVE can be called by any other program, any number of times.

IMMEDIATE OPERATE INSTRUCTIONS

A limited number of Immediate Operate instructions will be very useful; these in-
structions will perform operations on the contents of an Accumulator plus the im-
mediate operand. storing the result back in the specified Accumulator. Consider these
instructions:

An immediate operate instruction is specified

76543210

fo[a] T [0 Tof1]
0 Select AO

1 Select A1
00 Add immediate
01 AND immediate
10 OR immediate
11 Compare immediate




Each instruction describes an operation that will be performed using the contents of an
Accumulator, and the byte following the instruction code:

Program
One Memory
Accumulator
] Immediate Operate instruction
+
AND
OR
CMP

The status flags C, O, Z and S will be set or reset to reflect the results of the opera-
tion.

Observe that we have used eight of the twelve unused object code combinations from the 64
" Load/Store patterns 0 1XXXXXX. These four combinations still remain unused within this pattern:

01000111
01010111
01100111
01110111

These four combinations may be represented by: 01XX0111.

We will use the following mnemonics forthe Immediate | ADD IMMEDIATE: ‘
Operate instructions: AND IMMEDIATE
AlA DATA Add immediate to AQ OR IMMEDIATE
AiB DATA Add immediate toA1: COMPARE
NIA DATA  AND immediate to AQ IMMEDIATE
NIB DATA AND immediate to A1
OlA DATA OR immediate with AQ
0B DATA OR immediate with A1
CIA DATA Exclusive-OR immediate with AO
CiB DATA Exclusive-OR immediate with A1

In each case, DATA is a number (or a symbol) that becomes an 8-bit value. In each case, two
bytes of object code will be generated. For example, the OIB instruction will create this object
code:

Byte 1 oltjrojrryr| OR immediate with A1
Byte 2 | the data in this byte

We will now demonstrate the value of the Immediate Operate | IMMEDIATE
instructions. Look again at how, in the 1/0 instruction description, Port | OPERATE

2 was defined as a combination control and status port. INSTRUCTIONS
These two instructions determine if there is new data at 1/0 Port O JUSTIFIED

INS 2 Input status

NIA HO1 Mask out all but the O bit

H'O1" means 01 hexadecimal.



The NIA instruction resets to O all bits in Accumulator other than bit O:

AO Contents
INS 2 XXXXXXXX
NIA HO1 0000000X

X represents either O or 1.

If the result is zero, bit O must have been zero, and no new data is at |/O Port O; if the result is not
zero, bit O must have been 1. so there is new data at 1/0 Port Q.

Recall that the Z status will record whether the NIA instruction generates a zero or a non-zero
result.

Atfter reading data from 1/0 Port 0, the program can reset bit O of the /O Port 2 to O, and can set
bit 1 to 1, using these four instructions:

INS 2 Input status

NIA HFE’ Clear bit O

OlA HO02 Set bit 110 1
OuUTS 2 Return the result

This is what happens:
AQ Contents  1/0 Port 2 Contents

INS 2 XXXXXXXX YOXXXXXXX
NIA HFE’ XXXXXXXO0 XXXXXXXX
OlA H02 XXXXXX10 XXXXXXXX
ouTsS 2 XXXXXX10 XXXXXX10

Again X represents any binary digit (0 or 1).

If you are unclear on how the AND and OR work, refer again to Chapter 2. All we are doing is
ANDing /0 Port 2 contents with 11111110, then ORing the result with 00000010.

BRANCH ON
CONDITION INSTRUCTIONS

Up to this point, status flags Zero (2), Carry (C), Overflow (O), and Sign (S) have been
useless curiosities, because the microcomputer provides no way to take advantage
of the status flags.

What is the logical way of using status flags?

The ainswer is to provide instructions which allow program execution sequence to
depend on the condition of a status flag.

We have already seen two examples of how status flags can determine the subsequent course of
program’s execution. In the Immediate Operate instruction description. bit 0 of I/0O Port 2 is tested
for a zero or non-zero value. If this bit has a zero value, program execution must branch to some
instruction sequence which does not attempt to read new data from I/0 Port O. If this bitis 1, the
program execution sequence must branch to a routine which will input data from 1/0 Port 0.

The discussion of Load and Store instruction categories started out with a routine that loads
buffer length into Accumulator A1, then decrements the contents of A1 as a means of testing if
the last buffer byte has been moved: so long as A1 has not decremented to zero, program
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execution returns to the beginning of the data move loop; as soon as the contents of A1 decre-
ments to zero, program execution must continue and not branch back:

LM AOQ.LENGTH Load buffer length

LIM DCO,BUFA Load source buffer starting address

Lim DC1,BUFA Load destination buffer starting address
LOOP LNA DCO Load next input data byte, increment DCO

SNA DC1 Store next input data byte, increment DC1

AlB HFF Add HFF' to A1; this decrements A1

If A1 does not contain 0, return to LOOP
Iif A1 does contain 0, continue with next instruction
While the AIB instruction (which has already been described} in effect decrements the contents of

A1, a Register Operate instruction {(which has not yet been described) does the job in one byte,
instead of two.

Branch on Condition instructions are vital to a microcomputer | BRANCH ON
because they are the means of testing status flags; status flags in | CONDITION
turn are vital to a microcomputer because they are the means for deter- | INSTRUCTION
mining what happends when an instruction executed with more than one | JUSTIFICATION

possible result.

There are two philosophies concerning Branch on Condition instructions:; one uses
Branches, the other uses Skips.

A Branch on Condition instruction, as the name implies, has a | BRANCH
one- or two-byte displacement following the instruction code | PHILOSOPHY
{just like immediate data). If a specified condition is met, then the dis-
placement is added to the contents of the Program Counter as a signed binary number, and thus
a program branch is executed. If the specified condition is not met, the Program Counter is incre-
mented beyond the displacement bytes and the next sequential instruction is executed.

This may be iflustrated as follows:

Address x v
142A
1428 PC
142C Branch on condition
142D 3A Displacement byte
1428 142E if condition

142D + 003A if is not met.
condition is met.

The Skip on Condition instruction has no following address dis- | SKIP
placement. The logic of this instruction states that if the | PHILOSOPHY
specified status conditions are met, then the next sequential in-




struction will be skipped: if the specified status conditions are not met, then the next sequen-
tial instruction will be executed. This may be illustrated as follows:

Memory Program

Address \ Memory
142A
1428
142C
1420 } Skip on condition
142€ Next instruction

142F

PC

- 142D if condition
142F if condition s not met.
is met.

In the illustration above, observe that “"Next instruction’’ happens to be a two-byte instruction;
were it a one-byte instruction, the Program Counter-would be incremented to 142E ¢, if. the con-
dition was met. Were “Next instruction” a three-byte instruction, the Program Counter would be
incremented to 1430, if the condition was met.

By including an Unconditional Jump instruction directly after a skip on condition instruction, you
create the inverse ot a Branch on Condition instruction:

Memory Program

Address\ e
142
1428 PC

142C Skip on condition
142D Jump unconditional
142E } to this address
142F [
1430 1430 if condition 142D, then
is met. contents of 142E
and 142F if

condition is not met.

Observe that the auto increment and skip logic available with Load and Store instructions is a
form of Skip on Condition instruction.

Should our microcomputer include Branch on Condition or Skip on Condition instruc-
tions? We will choose Branch on Condition instructions because they are a little more
economical with this type of two-way execution sequence:

Data Movement Program Loop

LOOP LNA DCO LOOP LNA DCO
SNA DC1 SNA DCY
AlB HFF AlB. HFF
Branch to Loop if A1=0 Skip next instruction if A1 is not
equal to 0
< JMP LOOP
Branch Logic Skip Logic




What are the conditions on which we will branch? We will choose | BRANCH

the following eight branch conditions: ON WHAT
CONDITIONS?

Branch on Zero (Z) equals 0
Branch on Zero (Z) equals 1
Branch on Carry (C) equals O
Branch on Carry (C) equals 1
Branch on Overflow (O) equals 0
Branch on Overflow (O) equals 1
Branch on Sign (S) equals 0
Branch on Sign (S) equals 1
Branch on Condition instructions will be followed by single-byte displacements,
which means that a forward or reverse displacement of +127 or —128 bytes is possible. This is
reasonable since 90% or more of all branches will be served by this range, so to provide two-
byte displacements would be wasteful of memory. Of course, you can always generate a longer
range branch by combining an Unconditional Jump with a Branch on Condition instruction as
follows:

Branchon Z = 0
Displacement to THERE. Out of range!

Substitute:

Branch to HERE on Z = 1
JMP THERE
HERE Next instruction

The JMP instruction is followed by a two-byte address, so it can continue execution anywhere in
memory.

The Branch and Jump instruction sequence illustrated above has the same logic as a Skip on
Condition instruction.

We will use the following eight object codes for our eight Branch on Condition instructions:

765643210 Bit No.

[ofofo]1]o[x[x[x]

[—

A 000 BranchonZ = 0

001 BranchonZ = 1
010 BranchonC = 0
011 BranchonC = 1
100 Branchon O = 0
101 Branchon O = 1
110 BranchonS = 0
111 BranchonS = 1

Branch on Condition instruction

Branch on Condition instructions will have the format:
OoP LABEL

LABEL is the label of the instruction to be executed if the condition specified by OP is met.



The Assembler will convert LABEL into a displacement by subtracting the current Program
Counter contents from the 16-bit address value assigned to LABEL; if the result is out of range.
the Assembler will print an error message.

OP will be a mnemonic as follows:

BZ Branch on Zero (Z = 1)
BNZ Branch on No Zero (Z =0)
BC Branch on Carry (C = 1)

BNC Branch on No Carry (C =0)

80 Branch on Overfiow (O = 1)
BNO Branch on No Overflow (O =0)
BP Branch on Positive (S = Q)

BN Branch on Negative (S = 1)

The Compare instruction causes novice programmers a great | BRANCH ON
deal of confusion. ‘Branch on zero’” and ‘‘Branch on carry’’ are |LESS, EQUAL
not nearly as meaningful as ‘‘Branch if greater’” or “Branch if | OR GREATER
less.”

Recall that the Compare instruction subtracts an operand from the contents of the specified Ac-
cumulator, and sets status flags based on the result of the subtraction. The following conditions
can therefore be identified:

Branch on Accumulator less than or equal (BLE).

Branch on Accumulator less than operand (BL).

Branch on Accumutiator and operand equal (BE).

Branch on Accumulator and operand not equal (BNE).

Branch on Accumulator greater than operand (BG).

Branch on Accumulator greater than or equal (BGE).

Depending on whether the Accumulator contents is being interpreted as signed or
unsigned binary data, the qualitative conditional branches can be determined by
using the following Boolean logic:

Branch Boolean Condition
Condition Signed Data Unsigned Data

BLE ZOR(SXORO) =1 C=00RZ =1

BL SXORO =1 cC=0

BE Z =1 Z =1

BNE Z =0 Z =0

BG ZOR(SXORO)=0 |C =10RZ =0

BGE SXORO =0 Cc =1

In the table above, for unsigned data, some microprocessors invert the Carry status following a
subtract or compare operation. In that case, you must exchange C = 1and C = 0.

in order to illustrate the use of Branch on Condition instructions, we will take another
look at how the shower temperature controller might read data being input by the
thermometer.

When the thermometer is ready to output a byte of data. it tests bit 1 of I/O Port 2. If this bitis 1.
thermometer logic assumes that any previous data it sent has been read and processed:; therefore
thermometer logic transmits a byte of data to 1/0 Port O and signals this event by setting bit O of




1/0 Port 2 to 1. Thermometer logic will also reset bit 1 of 1/O Port 2 to 0, since the data at 1/0
Port 0 has not yet been read:

Datain /O Port O No data is in
® has been read 1/0 Port 0

opor2 [T LTI T0] @ [IIIIIIIQ vororo

Data is ready to transmit
\m I/0 Port O

Test bit 1 of 1/0 Port 2
Itis 1 so reset to O
Set bit 0 to 1 and output data

vorernz CITTTTIONIET CIITITITI vorono

[ ta i P
Data in I/0 Port O has not been read There is new data in 1/0 Port 0

In order to read data input by the thermometer, the microcomputer program must keep testing bit
0 of 1/0 Port 2 until this bit is read as 1. Then the microcomputer must read the data in 1/0 Port O;
but at the same time the microcomputer must reset bit 0 of I/0 Port 2 to O since. as soon as data
is read out of I/0 Port 0. it becomes old data. The program must now set bit 1 of /0 Port 2 to t;
this tells thermometer logic that the data in 1/0 Port O has been read.

The following instruction- sequence performs the operations described above; in addition, this in-
struction sequence assumes that the data byte read out of I/0 Port O will be stored in a memory
location addressed by Data Counter DCO. Auto increment addressing is used with DCO so that
this Data Counter automatically addresses the next free byte of the input data buffer, ready for the
next access of 1/0 Port 0.

LOOP INS 2 Input status
NIA HOov Clear all bar O bit
BZ LOOP Return to LOOP if O bit is O
INS 2 New data is ready. Input status again.
NIA HFE Reset bit 0 to O
OlA H'02' Setbit 1to 1
ouTS 2 Restore the new status to |/O Port 2
INS 0 Input the data byte
SNA DCO Store in memory using implied, auto increment addressing

A number of microcomputers have Jump-to-Subroutine instruc- | JUMP TO

tions akin to the Branch on Condition instructions we have just | SUBROUTINE
described. Our microcomputer has one Jump-to-Subroutine instruction | ON CONDITION
which was described as an immediate instruction.

Conditional Jump-to-Subroutine instructions will usually be followed by a two-byte address,
since subroutines may well reside in memory a long way away from the Jump-to-Subroutine in-
structions. The logic of Conditional Jump-to-Subroutine instructions is otherwise similar to the
Branch on Condition: if the specified condition is met, the Jump-to-Subroutine occurs; if not, the
next instruction is executed.

Many minicomputers also have a set of Conditional Return-from- | CONDITIONAL
Subroutine instructions. These instructions restore to the Program Counter | RETURN FROM
the address which the Jump-to-Subroutine instruction saved. We have no | SUBROUTINE
special Return-from-Subroutine instruction; we will use a Pop instruction
instead {described. along with the Stack instructions).
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REGISTER-REGISTER
MOVE INSTRUCTIONS

There are two types of instructions that reference two CPU registers: instructions
that move data from one register to another, and instructions that perform second-
ary memory reference type operations, but entirely within the CPU.

i A i i REGISTER TO
Register-to-register data movement instructions can be quite | REGISTER
limited in our microcomputer, given its register organization. MOVE
We must be able to move data between AO and A1. Exchanging the con- INSTRUCTIONS
tents of the Accumulators is alsc frequently useful. JUSTIFIED

Moving data from the Accumulators to the Data Counters allows program logic to create variable
addresses in the Accumulators, then move these addresses to a Data Counter, for variable im-
plied addressing. Moving data in the reverse direction allows a Data Counter to be used as tem-
porary storage for data in the Accumulators; of course, this assumes that the Data Counter in
question is not being used for implied addressing.

There is rarely any need to move data from one Data Counter to another. | MULTIPLE
However, the ability to move data between the Stack Pointer and Data | STACKS
Counters. or between the Stack Pointer and Accumulators is useful, since
this allows a program to have more than one Stack. DC2 could be used as a buffer for the Stack
Pointer, for example; now, by exchanging the contents of DC2 and SP, two Stacks could be ac-
cessed.

Moving data between the Accumulators and the Program Counter allows | COMPUTED
program logic to compute jump addresses. This is very useful in branch | JUMP
tables, which are illustrated later in this chapter.

We will therefore provide Data Move and Data Exchange instructions as follows:

76543210 Bit No.

A { LOOO X = A0 Y =Al
001 X =A Y = DCO
010 X =A Y =DC1
011 X =A0 Y =DC2
100 X =A Y =PC
101 X =SP Y =DCO
110 X =SP Y =DC1
111 X =SP Y =DC2
00 Move contents of X to Y
01 Move contents of Y to X
10 Exchange contents of Y and X
11 Not Used

A register-to-register Move instruction is specified

In the description above, X = A specifies a 16-bit value formed out of the two Accumulators as
follows: A0 Al
7 65 43 2 10 7 65 4 3 2 10

Crrrrrrry e rrefrld

1514131211109 8 7 6 5 4 3 2 1 0,
A




This instruction: MOVE

MOV S.D

Will move the register contents specified by S to the register specified by D. S and D
must be one of the eight valid pairs shown; therefore, these Moves are legal:

MOV A1.AQ Move A1 contents to AD
MOV AOA1 Move AOcontents to Al
MOV SP.DC1 Move Stack Pointer contents to DC1

This Move is illegal:
MOV DC1,DCO
but the intended operation could be achieved via these two legal Moves:

MOV DC1A Move DC1 contents to Accumulators
MOV A.DCO Move Accumulators to DCO

" Recall the switch change test program:; it used a register-to-register Move instruction as follows:

IN 4 Input new switch settings
XRA SWITCH Identify changed switches
MOV AQO,A1 Save AO contents in Al

ANA SWITCH Identify switches that turned on

Exchange instruction mnemonics will be:
X S.D

The same rufes apply to S and D as described for MOV.

REGISTER-REGISTER
OPERATE INSTRUCTIONS

Because our microcomputer has a number of secondary memory reference instruc-
tions, it needs very few Register-Register Operate instructions; the following seven
instructions, which parallel the secondary memory reference instructions, will do:

[
A 000 Add binary

001 Add decimal
010 Subtract decimal
011 AND

100 OR

101 Exclusive-OR
110 Compare

111 Not Used

— Register-Register Operate instruction




" The four status flags are set or reset to reflect the resuits of the operation.

" Because there is an AO-A1 Exchange instruction, we have only one set of

Register-Register Operate instructions, where AO is always the destination of the
resuit.

The Register-Register Operate instructions will use

these mnemaonics: ADD BINARY
‘AB Add A1 to AO binary ADD DECIMAL
AD Add A1 to AO decimal SUBTRACT DECIMAL
SD Subtract A1 from AO decimal AND
AND  AND A1 with AO OR
OR OR A1 with AQ | EXCLUSIVE OR
XOR  XOR Al.with AO COMPARE

CMP Compare A1 with AO
None of the Register-Register Operate instructions have operands.

These three instructions will allow A1 to be the destination.of any Register-Register Operate in-
struction:

X AQ A1 Exchange AO and A1 contents
AB Add binary: the result is in AO
X AQ,A1 Exchange AO and A1 contents

Register-Register Operate instructions are convenient to have, | REGISTER-
but not vital, since they do nothing that could not be done using | REGISTER
Load, Store and secondary memory reference instructions. OPERATE

Register-Register Operate instructions will execute faster than equivalent INSTRUCTIONS
. . ) JUSTIFICATION

secondary memory reference instructions, since secondary memory

reference instructions require one data byte to be fetched from memory — and that takes time.

There is one further set of Register-Register Operate instruc- | ACCUMULATOR
tions which will prove very useful; we will allow the contents of | DATA COUNTER
Accumulator AO to be added, as a signed binary number, to any | ADDITION

- one of the Data Counters. This allows a data address displace-
ment to be computed, then added to (or subtracted from) a Data Counter.

This instruction is particularly useful in matrix arithmetic. where doubly | ADDRESSING
subscripted parameters such as MATRICES

VAL (X.Y)

may be used. If the dimension of Y is known, each increment of X may be handled by adding the
dimension of Y to the Data Counter which is addressing VAL. This is illustrated as follows:




VAL
Data Table

VAL(1,1)
VAL(1.2)
VAL(1,3)
VAL (1,4)

VAL (1,25)
AD VALG.
VAL (2,2)
\> VAL (2.3)

VAL (2,25)
VAL (3.1)

VAL (3.2)
VAL (3.3)

etc.

To extend this type of matrix handling, we will also allow AO and A1, treated as a 16-bit
unit, to be added to any Data Counter.

We now have these instruction codes:

765643210 Bit No.

4\ 00 DCO is destination

01 DC1 is destination
10 DC2 is destination
11 SP s destination
0 Add AO
1 Add A
Add to Address register instruction specified

A specifies the 16-bit unit:

A0 Al
7 6 54 3 2 10 7 6 5 4 3 2 1 0 BitNo.(8bits)

HNEEENEEREERERERE

Js 14 13121110 9 8 7?7 6 5 4 3 2 1 0' Bit No. (16 bits)
N

A

We will use these mnemonics:
DAD SD

S is the source, and may be AO or A; no other options are allowed.

D is the destination. and may be DCO, DC1, DC2 or SP; no other options are allowed.
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The Accumulator-Data Counter Addition instruction is also | BRANCH
useful for creating branch tables.

TABLES

A branch table is a list of addresses, identifying a number of programs, just one of which must be
executed, based on current program logic.

First we will create a table of program starting addresses; because this is not a simple concept,
we will illustrate it with an example that uses real, but arbitrary numbers:

ADDR1 EQU
ADDR2 EQU
ADDR3 EQU
etc.
ORG
BTBL DA
DA
DA
etc.

The EQU mnemonic, recall, is an Assembler directive; it tells the Assem- | EQUATE
bler what values to assign to the symbols ADDR1, ADDR2, ADDR3, etc. | DIRECTIVE

The DA mnemonic is a “Define Address” Assembler directive; it tells the | DEFINE
Assembler to place the 16-bit value provided by the operand in the next | ADDRESS

H1247
H183C

H'28CA’

H0800
ADDR1

ADDR2
ADDR3

two currently identified memory locations.

The ORG mnemonic is an Assembler directive which provides the current | ORIGIN
memory address. In this case, it defines the current memory address as DIRECTIVE
0800,¢; in terms of a memory map, the above instructions result in these

six data bytes: Memory

Address

O7FF

BTBL —— - 0800
0801

0802

0803

0804

0805

0806

Memory

12

47

18

3C

28

CA

Start of Program 1
Start of Program 2
Start of Program 3

DIRECTIVE

ADDR1

ADDR2

ADDR3

The label BTBL, note, becomes a symbol with the value 0800;.

Now suppose a program number is in Accumulator AQ; we can execute the program identified by

the program number as follows:

LIM DCO.BTBL Load the beginning address for program addresses into DCO
DAD A0,DCO Add the table number twice,

DAD A0.DCO since each address occupies two bytes

LNA DCO Load the address identified by DCO

LMB DCO

MOV APC Move this address to PC
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Look at what happens:
1) The LIM instruction loads 0800, into DCO.

_2) Suppose Accumulator AO contains 2: the two DAD instructions add 4 to DCO. which now
contains 0804 . -

3) The LNA instruction loads the contents of memory location 0804, into AQ. then increments
DCO. Now AO contains 28,5 and DCO contains 0805,6.

4) The LMB instruction loads the contents of memory location 0805, into A1. Now A1 con-
tains CA,g.

5)  The MOV instruction moves the value 28CA,¢ into the Program Counter, forcing a jump to
memory location 28CA .

When would you use a branch table? One example is given in the description of interrupt instruc-
tions.

REGISTER OPERATE INSTRUCTIONS

Register Operate instructions modify the contents of a single register; no other
register’'s contents are modified in any way.

Some Register Operate instructions are absolutely nec y. whereas others are
nothing more than conveniences. We will therefore identify the ways in which a register's
contents may be modified, and determine whether the operation is necessary. or just a conve-
nience.

The need to increment and decrement registers’ contents is | INCREMENT
universal; whenever a register contains a counter or index, there is the | AND
probability that it will have to be incremented or decremented. To some | DECREMENT
extent, the auto increment and auto decrement variations of implied ad-
dressing makes the need to increment and decrement the Data Counters less vital; still it is a
useful capability, since it allows addresses to be incremented or decremented selectively — not
always.

Since we have no binary subtract instructions, it is vital that | COMPLEMENT
there be an instruction to complement at least one of the Ac-

cumulators. Complementing the Data Counters serves no useful purpose. See Chapter 2 for a
discussion of twos complement subtraction.

It must be possible to zero each Accumulator; this is a frequent pre- | CLEAR
requisite before performing addition, or simply as an initialization step. | REGISTER
Zeroing the Address Registers is not necessary, since they have data
loaded into them as the most frequent operation.

Shift and rotate operations are very important for two reasons: | SHIFT AND
they are vital to most muitiplication and division algorithms, and { ROTATE
they are frequently used: in counting operations.

A shift operation is finear: SHIFT ;

lost ————10 | [ Oin

Thus a simple shift left, as illustrated abeve. will move each bit to the next bit to the left; the high

order bit having no bit to:the left, will be lost. There being no bit to the right of the low order bit, 0
will be moved into the low order bit.
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A rotate operation is circular; the high and low order bits would be | ROTATE
assumed adjacent: r\ ',\ m

— -]

N A Y

Numerous variations of shift and rotate operations are possible; you can | SIMPLE SHIFT

shift or rotate left: AND ROTATE
GE===ee s N
Simple Rotate Left Simple Shift Left

You can rotate or shift right:

Ty e

-

Simple Rotate Right Simple Shift Right

A right rotate (or shift) is equivalent to dividing by 2, while the left rotate (or shift) is equivalent to
multiplying by 2. and can be reproduced by adding the contents of a register to itself.

A shift or rotate may occur through the Carry status, in which case the | SHIFT AND
shift and rotate become identical operations: ROTATE
THROUGH
-® CARRY
high order bit ' old value of Carry
becomes new to low order bit

value of Carry

A left shift/rotate through Carry is illustrated above; the equivalent right shift through Carry is self-
evident.
Another variation branches a bit into the Carry status, but excludes the old | SHIFT AND

Carry status from the shift or rotate: ROTATE WITH
BRANCH

({*j—H—Hﬁ—#b g 5 o i

) Shift With Branch Carry
Rotate with Branch Carry

The shift with branch-carry is very useful as the first in a multibyte shift operation. where an initial
value of O must be assumed for the Carry status.

The shift may also be arithmetic and propagate the high order bit (sign bit) | ARITHMETIC
to the right: SHIFT

76543210 Bit No.

unchanged




An arithmetic shift left will maintain the sign bit, and shii. out of the penultimate bit into the Carry:

76543210 Bit No.
unchanged 0

C

A four-bit shift, left or right, is very useful in microcomputer applictions, SHIFTING
which frequently process numeric data. BINARY CODED

As was discussed in Chapter 2, binary-coded decimal digits each occupy DECIMAL DATA

four bits; each byte holds two BCD digits. A four-bit shift is therefore equivalent to a single
decimal digit shift, left or right; that is. it is equivalent to multiplying or dividing by ten.

The four-bit left and right shift also makes it easy to pack and unpack ASCIl characters. Recall that
the ASCIl representation of a decimal digit appears as follows:

0 = 00110000
1 = 00110001
2 = 00110010
3 = 00110011
4 = 00110100
5 = 00110101
6 = 00110110
7 = 00110111
8 = 00111000
9 = 00111001

Suppose a string of ASCII digits are being read through an I/0 port and must be packed in BCD
format. two digits per byte as follows:

Data as read:  0011[0010] co11[o770} OOW 0011f0107] etc.

Data as packed: 0010 0110 1000 0101

The four-bit shift is a natural for this operation; we will settle on some shift mnemonics, then
write a program to perform this BCD packing operation

How many, and which shift/rotate instructions should we have?

Shift and rotate instructions are usually inadequately rpresented in microcomputer
instruction sets. We will have such instructions for the two Accumulators only, but we will
provide shifts and rotates, without Carry (simple), with Carry, and with branched Carry.

Shifting Data Counter contents would not be very useful; it would provide a 16-bit shift, but that
is a luxury we will have to forego.

We will include two versions of the four-bit left and right shift. One will operate on the contents
of either Accumulator AO or A1; the other will operate on the combined unit as a 16-bit number.
In each case. since we are dealing with four-bit units the Accumulator will be ignored during the
shift operation.

We can now summarize the Register Operate instruction object codes as follows.



For the operations which are confined to the Accumulators, these are the instruc-
tions and their object codes:

76543210 Bit No.

l 1| 1|O| | | | | l
T
‘r— 0000 Simple. shift right

0001 Simple shift left

0010 Simple rotate right

0011 Simple rotate left

0100 Shift right through Carry
0101 Shift left through Carry
0110 Shift right with branch Carry
0111 Shift left with branch Carry
1000 Shift right arithmetic

1001 Shift left arithmetic

1010 Clear register

1011 Complement register

0 Operate on AQ contents
1 Operate on A1 contents

—_———

Register Operate instruction

The shift and rotate instructions may modify the Carry status. The Complement instruction will
affect the Zero status. No other status flags will be changed.

The two 4-bit shift instructions can operate on A0, A1, A(AO - Al 16-bit unit). Ob-
ject codes for these. instructions will be as follows:
76565643210 Bit No.

NOCEAREN
— A
_j\ 11 100 Operate on AO contents

1101 Operate on A1 contents
1110 Operate on A contents
0 Shift left four bits
1 Shift right four bits
Register Operate instruction

The Increment.and Decrement instructions operate on the Accumulators and on the
Address registers; they will use these object codes:

76543210 Bit No.

1
; B
r~ _L_ 000 Operate on AQ

001 Operate on Al
010 Operate on A
011 Operate on DCO
100 Operate on DC1
101 Operate on DC2

0 Increment register contents
1 Decrement register contents

Register Increment or Decrement instruction

-




'
.

~

The Shift and Rotate instructions will have these mnemonics,

without operands:

SHRA SHIFT AO CONTENTS RIGHT SIMPLE
SHRB SHIFT A1 Al CONTENTS RIGHT SIMPLE
SHLA SHIFT AO CONTENTS LEFT SIMPLE
SHLB SHIFT A1 CONTENTS LEFT SIMPLE
RORA ROTATE AQ RIGHT SIMPLE

RORB ROTATE A1 RIGHT SIMPLE

ROLA ROTATE AQ LEFT SIMPLE

ROLB ROTATE A1 LEFT SIMPLE

SRCA SHIFT AO RIGHT THROUGH CARRY
SRCB SHIFT A1 RIGHT THROUGH CARRY
SLCA SHIFT AO LEFT THROUGH CARRY
SLCB SHIFT A1 LEFT THROUGH CARRY
SRBA SHIFT AO RIGHT WITH BRANCH CARRY
SRBB SHIFT A1 RIGHT WITH BRANCH CARRY
SLBA SHIFT AO LEFT WITH BRANCH CARRY
SL.BB SHIFT A1 LEFT WITH BRANCH CARRY
SRAA SHIFT AO RIGHT ARITHMETIC

SRAB SHIFT A1 RIGHT ARITHMETIC

SLAA SHIFT-AQ LEFT ARITHMETIC

SLAB SHIFT A1 LEFT ARITHMETIC

SR4A SHIFT A0 RIGHT FOUR BITS

SR4B SHIFT A1 RIGHT FOUR BITS

SL4A SHIFT AO LEFT FOUR BITS

SL4B SHIFT A1 LEFT FOUR BITS

SR4 SHIFT AO AND A1 RIGHT FOUR BITS
SL4 SHIFT AD AND A1 LEFT FOUR BITS

These are the mnemonics we will use for Register Operate in-

structions:

INC R

SHIFT AND
ROTATE
INSTRUCTIONS

INCREMENT
REGISTER

This specifies the “Increment Register” instruction: R may be A0, A1, A, DCO, DC1 or DC2.

The “Decrement Register” instruction will differ only in the

mnemonic, as follows:

DEC R

Complement and Clear will apply to the two Accumulators only,

and will have these mnemonics:

CLA
CLB

COA
coB

These four instructions have no operand.

Clear AO
Clear A1
Complement AQ
Compliement A1
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We will now illustrate the value of Register Operate instructions with some exam-
ples of how these instructions may be used.

Consider multibyte shifts; they allow multibyte numbers to be multiplied SHIFT

and divided. A rotate through Carry will propagate a shift down a number MULTIBYTE
of bytes, since the high order bit of each byte propagates into the Carry
status, then into the low order bit of the next byte. This may be illustrated for the following sim-
ple, three-byte left shift:

Start: [eLTaTolel ] (ol fol Mol o oli]o]

C assumed initial C status

Step 1: |O|1|1|OI1IOI1|W| 1]0j1j1{0] 1j0]1 .0]1|1IO|1|0|0|

C

Step 2: ool o] 7k [o ol 1ol o] LTl T [ol1]olo]

C
seps Qoo ] [ollel Mol Tol Lol i]ol1]o]o}

@

C
The program to perform this operation is as follows:

LIM DCO.BUFA Load the buffer starting address in DCO

LMA DCo Load low order byte into AQ via DCO
SLBA Shift left with branch carry

SDA DCO Store the result back; decrement DCO
LMA DCO Load the second byte into ACO
SLCA Shift left with carry

SDA DCO Store result back; decrement DCO
LMA DCO Load last byte

SLCA Shift left with carry

SMA DCO Store result back

The LIM instruction simply loads the address of the last byte into Data Counter DCO.
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The next three instructions, LMA. SLBA and SDA accomplish step 1. First, LMA loads the low
order byte into Accumulator AQ but does not modify the address in DCO, since we will want to
retum the shifted result to the same address. The SLBA instruction is very useful at this point,
because it performs a branch carry: we do not know what the Carry status is before entering this
routine, but with the SLBA instruction we do not care; this instruction loads 0 into the low order
bit of AO, and it moves the high order bit of AQ into the Carry status, ready ta-beshifted into the
next byte. The SDA instruction stores the shifted contents of AO back into the memory byte from
which the unshifted source came: then the address in DCO is decremented to point to the second
byte.

The next three instructions, LMA, SLCA and SDA perform step 2. These three instructions differ
from the previous three instructions only in that a shift left with carry must now be performed
since the Carry status represents the high order bit of the previous byte, which must become the
low order bit of the current byte.

Step 3 is accomplished via the last three instructions, LMA, SLCA and SMA:; these three instruc-
tions differ from the three step 2 instructions only in that we do not bother to decrement the ad-
dress in DCO, since there are no more bytes to be shifted.

Observe that since only three bytes are to be shifted, we do not use an instruction loop. The
whole of the program above only occupies 12 bytes, three for the Load Immediate into DCO in-
struction, one each for the remaining instructions. We ‘could condense the three steps into one
set of three repeated instructions so long as we can change the SLBA to a SLCA instruction, and
so long as the final SMA instruction becomes an SDA instruction. The program now appears as
follows:

Clear Carry status which must nitially be 0

LIM DCO.BUFA Load buffer starting address in DCO
LIM A1.3 Load byte count into A1

LOOP LMA DCOo Load next byte into AQ, via DCO
SLCA Shift left with Carry
SDA DCO Store the result back: decrement DCO
DEC A1l Decrement byte count
BNZ LOOP Return if not end

We now-have a program with eight instructions versus the previous ten. But these eight instruc-
tions are still going to occupy 12 bytes: three for the Load Immediate into DCO. two each for the
Load Immediate into A1 and the Branch on Non-Zero, and one each for the remainder. This is
another example of the fact that when a loop has very few iterations, a branch-and-loop program
structure offers few economies as compared to a once-through program structure.

Next consider switch testing. The eight switches we described SWITCH
when justifying secondary memory reference instructions could TESTING
be tested for “‘on’' or “off"’ status in a program loop as follows:

1) Load 00000001 into Al. We are going to use A1 as a switch counter. fts contents will be
shifted left with -branch carry untit a 1 appears in the Carry status, which will indicate that
eight shifts have been performed.

2)  Load switch settings into AO.
3)  Shift AO one bit right with branch carry. The low order bit of AQ is now in the Carry status.

4} Save ADand A1in DC2. The Carry status still reflects the low order bit of AQ, since a Move
instruction will not affect the status flags.

5) Branch on “carry true” to “'switch on” program. Otherwise continue with “switch off
program.
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6) When the “switch on” or “'switch off” program has completed execution, reload AO and A1
from DC2.

7)  Shift A1 left one bit with branch carry. If Carry is set, we are done. If Carry is not set, return to
step 3 above.

The program steps required to implement the above logic are as follows:

LM Al Load 01 into A1l

IN 4 Input switch settings from 1/0 port 4
LOOP SRBA Shift AO right with branch carry

MOV A.DC2 Save AO and A1 in DC2

BC SWON Branch on C=1 to “"switch on” program

“Switch off program logic appears here.

MOV DC2.A Restore AO and A1 from DC2
SLBB Shift A1 left with branch carry

Now consider the program steps needed to pack the numeric | PACKING
bits (low order four bits) of ASCII numeric digit representations; | ASCII DIGITS
two numeric digits will be packed per byte. as described directly before
shift object codes illustration.

These steps would be required to pack digits:
Step 1 — read in one ASCIl digit and store in Accumulator AD
Step 2 — shift left four bits.
Step 3 — move the contents of AO to A1. Al now contains the high order digit as follows:
ASCIl digit: 001 1XXXX
After four bit shift left:  XXXX0000
Step 4 — Input the next ASCII digit to Accumulator AQ.

Step 5 — mask out the high order four bits of AO. AO now contains the low order digit as
follows:

ASCII digit: - 0011YYYY
After masking high order bits:  0000YYYY

Step 6 -— Add A1 to AO. AD now contains the high and low order digits as follows:
0000YYYY + XXXX0000 = XXXXYYYY

Step 7 — store the two packed digits in memory (we will assume the correct buffer is addressed
by DC1).
Step 8 — return to step 1 for the next two ASCI! digits.

We will assume that ASCII digits are input at 1/O Port 5, and bit 0 of I/0 Port 6 is set to 1 by the
inputting device whenever it has transmitted an ASCIl digit to 1/O Port 5.
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Program steps are as follows:

LOOP1 IN 6 Input status
SRBA Shift bit 0 of AO with branch carry
BNC LOOP1 If Carry is O. input status again
ouT 6 If Carry is 1, output AO to 1/O Port 6
This clears the status
IN 5 Input the next ASCIl digit
SL4A Shift left 4 bits
MoV AO.A1 Save in A1
LOOP2 IN 6 Repeat first five instructions
SRBA to input next ASCII digit
BNC LOOP2
out 6
IN 5
NIA HOF* Mask out high order four bits
AB Add A1 to AD
LDA DCO Store the two packed digits
JMP LOOP1 Return for next two digits

STACK INSTRUCTIONS

Since our microcomputer has a Stack, it must have Push instructions to move
registers’ contents onto the Stack; it must also have Pop instructions to move data

off the Stack, and into registers.

Many microcomputer manuals list the Jump-to-Subroutine in-
struction as a Stack instruction, since it pushes the Program
Counter contents onto the Stack before loading a new address
into the Program Counter.

Push instructions will be used primarily for interrupt processing;
programming examples are given along with interrupt handling
instructions.

Pop instructions are used in interrupt processing, and in order to
return from a subroutine: examples of the latter use are given
shortly.

Push and Pop instructions are sometimes used to pass data
{parameters) to subroutines; we will illustrate this use of Push
and Pop instructions later.
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Our microcomputer will have Push and Pop instructions that reference the two Ac-
cumulators, and the four Address registers; object codes will be as follows:

76543210 Bit No.

\
LOOO AQ selected

001 At selected
010 DCO selected
011 DC1 selected
100 DC2 selected
101 SP selected
110 PC selected

0 Push
1 Pop

Stack instruction specified

The Push and Pop instructions will use this instruction format:
oP R

OP represents the instruction mnemonic; it will be PUSH or POP, for a Push or Pop instruction,
respectively.

R will specify the register whose contents is to be pushed onto the Stack, or which is to receive
data popped from the Stack. R may be AO, A1, DCO, DC1. DC2 or PC. No other symbol is allowed.

We will allow an additional instruction mnemonic for subroutine | RETURN
returns. The instruction: INSTRUCTION

POP  PC

will move the two bytes at the top of the Stack into the Program Counter, thus effecting a return
from the subroutine. The mnemonic:

RET

will perform the same operation, and generate the same object code; in other words, the RET
mnemonic will generate the one object code byte:

76543210

[ fr]rfo]

As an example of Stack instructions’ use, return to the data movement subroutine
which was described along with Immediate instructions; the subroutine was listed like
this:

MOVE LIM DCO,BUFA Load source initial address
LiM DC1.BUFB Load destination initial address
LOOP LNA DCO Move data from source

SSA DC1,LOOP to destination
Return from Subroutine
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“In addition to adding a Return instruction, this subroutine can be made PARAMETER
more useful if the beginning addresses for the source and destination | PASSING
buffers (BUFA and BUFB) are variable. Stack instructions provide one way
(but not the best way) of making this possible.

Before calling subroutine MOVE, a program can push its version of the addresses BUFA and
BUFB onto the Stack. as follows:

Lim DCO,BUFX
PUSH  DCO
LIM DCO,BUFY
PUSH  DCO

JSR " MOVE

The top of the Stack now looks like this:

Stack

l— Stack Pointer points here
Return address, i.e., address of
instruction following JSR

Address BUFY

Address BUFX

I Previous Stack contents

Subroutine MOVE must be modified as follows:

MOVE POP DC2 Save the return address in DC2

POP DC1 Load BUFY as destination initial address

POP DCO * Load BUFX as source initial address

PUSH DC2 Replace return address at top of stack
LOOP LNA DCO Move data from source

SSA DC1,LO0P to destination

RET Pop return address from stack

PARAMETER PASSING INSTRUCTIONS

Because subroutines are so frequently used, it is worth taking a look at instructions
which make subroutines easier to use.

Let us return again to the data move subroutine which we have been developing up to this point.

In the first place, this subroutine simply moved data from a source buffer with a dedicated ad-
dress, to a destination buffer with another dedicated address.

Next, when describing the Push and Pop instructions we improved on the SUBROUTINE
versatility of this subroutine by allowing the calling program to specify the PARAMETERS
source and destination buffer beginning addresses. These two addresses
are called “parameters”, which the calling program passes to the subroutine. Parameter passing
is a very important feature of subroutine handling; by making parameéter passing easy, a
microcomputer becomes a significantly more powerful device.
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Parameter passing instructions are, in fact, quite simple to specify. What we will do is to allow
parameters to follow the Jump-to-Subroutine instruction, then we will provide the microcom-
puter with a form of indirect addressing. where the two bytes at the top of the Stack become the
memory address from which data will be fetched.

But before we explain this concept with pictures and examples, let us define the
parameter passing instructions which our microcomputer will include.

First, there are the object codes that are to be used:

76543210 Bit No.

(ofofofofo] 1|

‘—r—t—_OH Pass parameters to AO
4 100 Pass parameters to Al

101 Pass parameters to DCO

110 Pass parameters to DC1
111 Pass parameters to DC2

L Parameter passing instructions specified

The instruction format for the Pass Parameter instruction will be | PASS
as follows: PARAMETER
INSTRUCTION

SPP R

SPP is the instruction mnemonic, and R identifies one of the registers A0, A1, DCO, DC1 or DC2;
no other symbol is allowed for R.

We will now develop a very efficient implementation of the data PASSING

moving subroutine. PARAMETERS
. . X TO
The subroutine will be called as follows: SUBROUTINES

JSR MOVE Call data move subroutine
DA BUFX Specify beginning source address
DA BUFY Specify beginning destination address

Recall that the DA mnemonic represents the Define Address Assembler directive. Suppose these
instructions reside in memory as follows:

Program
Memory
04C0O }
PC e - 04C1 | 10111101 |<€——Jump to subroutine
20
04c2 Mave subroutine execution address
04C3 80
04C4 08
BUFX
04C5 00
04C6 08 BUFY.
04C7 40
0478
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After the JSR instruction has executed, PC will contain 2080,. which is the execution address for
subroutine MOVE. The previous value of PC, 04C4,¢, will be at the top of the Stack:

Stack

SP ————y

04
C4

The MOVE subroutine appears as follows:

MOVE SPP DCO Load source starting address into DCO
SPP DC1 Load destination starting address into DC1
LOOP LNA DCO Move data from source
SSA DC1,LOOP" to destination
RET Pop return address from Stack

The first SPP instruction causes the CPU"ta execute the following logic:
1) The two bytes at the top of the Stack are fetched into the CPU.

2) These two bytes are treated as a memory address. The contents of the memory location
identified by this memory address are loaded into the high order byte of DCO. The-memory
address is then incremented. The memory address was 04C4,¢ and memory focation 04C4,4
contains 08,,. Therefore, at the end of this step, the high order byte of DCO contains the
value 08, and the memory address has been incremented to 04C5,.

3} Step 2 is repeated, with the data fetched from memory going to the low order byte of DCO.
At the end of this step DCO contained 0800,6, and the memory address is now 04C8,¢.

4) Instruction execution is complete so the memory address is returned to the top of the Stack,
which now holds 04C6,,, not 04C4 4.

The second SPP instruction is a repeat of the first SPP instruction, except that DC1 is specified as
the destination; therefore, at the conclusion of the SPP instruction, 0840, will be stored in DC1,
and the top two bytes of the Stack will hold the value 04C8,¢. This is the address of the next in-
struction to be executed following the two parameters, BUFX and BUFY. At the conclusion of the
Move subroutine, the RET instruction wilf pop the value 04C8,4 back into the Program Counter,
thus allowing normal program execution to continue.

INTERRUPT INSTRUCTIONS

In reality we are going to talk about more than interrupt instructions. There are only
three interrupt instructions; one disables all interrupts, the second enables all inter-
rupts, and the third is a Return-from-Interrupt instruction.

How is our microcomputer going to handle interrupts?

There' are many similarities between processing an interrupt and entering a
subroutine; in each case, program execution temporarily branches from a main program to a
secondary logic sequence, at the conclusion of which program execution returns to the main pro-
gram. The difference between a subroutine and an interrupt is that a Jump-to-Subroutine is part
of the scheduled mainstream logic:

Main Program

Subroutin
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An interrupt, on the other hand. is an unscheduled event, and the main program has no way of
knowing when the interrupt will occur:

Interrupt!

Main Program

Interrupt

Service
Routine

We discussed at some length, in Chapter 5. the various ways in which external devices can inter-
rupt the CPU. Recall that as the CPU’s interrupt protocol becomes more minicomputer-like, and
more sophisticated, so also the cost and complexity of the external logic needed to meet the re-
quirements of CPU interrupt protocol goes up. We will therefore adopt a very simple scheme. In-
terrupting devices will be daisy-chained on a single interrupt request line. and when the CPU
sends out an acknowledge signal, the interrupting device will output a single byte of data to an
1/0 port with address FFq. The CPU will interpret the data in 1/0 port FF 15 as identifying the in-
terrupting device:

As soon as the CPU acknowledges an interrupt, it will automatically do three things:

First, it will disable interrupts, thus preventing another interrupt from being processed before the
current one has been adequately handled. An Enable Interrupt instruction must be executed by
the program before any further interrupts can be handled.

Next the CPU will save the status flags’ contents by pushing them onto the Stack.

Finally the CPU will push the Program Counter contents to the top of the Stack, and clear the Pro-
gram Counter. This causes program execution to continue at memory location 0.

A Disable Interrupt instruction can be executed at any time to prevent any interrupts
from being acknowledged:; this condition will last until the Enable Interrupt instruc-
tion is re-executed.

Let us first look at the object code for the Enable and Disable Interrupt instructions:
Interrupt procesing instruction specified

76543210 Bit No.

0 Enable interrupts
1 Disable interrupts




The mnemonics for the two interrupt instructions will be:

ENABLE
INTERRUPT

DI

for Disable Interrupts, and

DISABLE
INTERRUPT

E!

for Enable Interrupts.

The Return-from-Interrupt instruction will do three things:

First it will return the status flags, which were saved on the Stack auto-

matically when the interrupt was acknowledged.

RETURN
FROM
INTERRUPT

Then it will pop the return address from the Stack to the Program Counter.

Finally the Return-from-Interrupt instruction enables interrupts.
The Return-from-Interrupt instruction’s object code will be:
76543210 Bit No.

Pl [ [T}

The instruetion mnemonic will be:

Return from interrupt

RTI

To illustrate the use of interrupt instructions, we will show the program steps which follow an In-

terrupt Acknowledge.

We will also show the program steps which must be present at the end of the interrupt service

routine.

FolloWing an interrupt these steps must occur:

1) At the time of the interrupt Acknowledge, the CPU logic saves the

INTERRUPT
ACKNOWLEDGE

status flags at the top of the Stack, pushes the Program Counter contents onto the top of the
Stack, then disables interrupts. The Program Counter is zeroed, which means that program

execution jumps to memory location O.

2) Starting at memory location O, there is a short prograrn'sequence which saves the contents
of all CPU registers by pushing registers’ contents onto the Stack. This is necessary, since the
registers may be used in any way by the program which is about to be executed.

3)  After all registers’ contents have been saved on the Stack, the contents of {/O Port FF g is
read, and is used to compute the starting address of the particular program which will service

the identified interrupting device.
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4) The program which gets executed following step 3 may optionally contain an Enable Inter-
rupt instruction. If this instruction is present, another interrupt may be processed, before the

current interrupt has completed execution, as follows:

First Interrupt

Main Program Main Program

Second
Interrupt

First interrupt
service routine

Second
interrupt
service routine

If interrupts are not enabled, then no further interrupts can be processed until their Return-from-

Interrupt instruction is executed:

This is the instruction sequence which, given our interrupt service logic, must be present begin-

ning at memory location 0:

ORG 0

PUSH A0 Save all registers’ contents

PUSH Al on the stack

PUSH DCO

PUSH DC1

PUSH DC2

IN HFF Input device ID from /O Port FF
LM DCO,BTBL Load jump table base address
SHLA Shift AO left, simple. to multiply by 2
DAD AQ.DCO Add A0 to DCO

LNA DCO Load the interrupt service routine
LMB DCO starting address

MOV A.PC Move the address to PC

This is what the above short program does.

Recall that the ORG mnemonic specifies the current memory address for
the Assembler. The ORG mnemenic above tells the Assembler to start
creating object code beginning at memory location 0.

The five Push instructions save the contents of all registers on the Stack.

The IN instruction will receive a device ID at I/O Port FF. We are assuming that within the time
taken for the CPU to execute the Push instruction, the interrupting device will have been able to

SAVING
REGISTERS
ON STACK.

place its ID number at 1/0 Port FF. This ID number will be in Accumulator AC.
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~ ~ Notice in the branch table instruction sequence above that a Shift instruc-

L y

The instructions from LIM to MOV constitute a branch table. Branch tables | BRANCH
were described along with the DAD Register-Register Operate instruction. | TABLE

tion has been used to multiply the contents of AO by 2 before adding to DCO:; in the previous ex-
ample, the DAD instruction was executed twice to achieve the same end result.

The address computed by the branch table becomes the beginning address of the interrupt serv-

" ice routine, which will now be executed to service the specific device which requested an inter-
rupt. Once the interrupt service routine has completed execution, it will call a subroutine that
reverses the interrupt acknowledge steps as follows:

RINT POP DC2 Restore all registers’ contents }
POP DC1
POP DCO
POP A1l
POP AQ
RTI

Observe that registers are popped from the Stack in the reverse order to | RESTORING
which they were pushed. since the Stack is a last-in-first-out storage unit. | REGISTERS

The final RTI instruction will restore the saved status (which is on the Stack FROM STACK
foltowing the interrupt acknowledge) to the four status flags, then will load back into the Program
Counter the memory address which was saved at the time of the interrupt acknowledge.

If interrupts are still disabled, the RTI instruction will re-enable interrupts.

Program execution will now continue at the point where the interrupt occurred.

STATUS INSTRUCTIONS
Since we have four status flags, Sign (S), Carry (C), Overfiow (0) and Zero (2), it must

be possible to set or reset these flags individually. The most common situation in which

program logic will rquire a flag to be set is just before entering a program loop which contains a
Branch on Condition instruction at the beginning of the loop. In the normal course of events,

status flags will be set later in the loop to be tested when program logic comes back to the begin- -

ning of the foop. it must be possible to set status conditions before entering the loop, so that we
can get by the Branch on Condition on the first pass.

There are also many multibyte arithmetic aigorithms which require the Carry and Overflow

_.statuses to be either cleared or set before starting the algorithm; subsequently, after each byte of
the multibyte number is processed, carries are passed from one byte to the next via these two
status flags, as described in Chapter 2.

We will therefore include these eight status instructions:

76543210 Bit No.

ofofol 11 [T :
_—r—‘l

1 00 Select Carry (C)

01 Select Overflow {O)
10 Select Zero (Z)
11 Select Sign {S)
O Reset status to O
1 Setstatusto 1

L Status instruction specified

i
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The Set Status instruction will have this format: STATUS SET

SET X
The Reset Status instruction will have this format: . STATUS RESET
RES X

in each case. X may be C, O, Z or S, 1o identify one of the four status flags. No other symbol is
allowed.

As an examplg of status instruction use, the multibyte, binary addition routine. described along
with the secondary memory reference instructions, starts out by clearing the Carry status:

RES C Clear Carry status
LOOP LMA DCO Load next input byte
ABA DC1 Add binary from answer buffer

SSA DC1.LO0OP Store the result, increment and skip

Once in the loop. the binary addition instruction ABA sets and resets the Carry status
appropriately.

HALT INSTRUCTION

Every microcomputer has a Halt instruction. When this instruction is executed, the
microcomputer simply stops. In a minicomputer, or in a microcomputer that has a front panel,
program execution is restarted by hitting a restart button on the panel. So far as the CPU is con-
cerned, the reset signal which is input to the CPU (and was described in Chapter 4) must be -
pulsed in order to start execution after a Halt instruction.

In our microcomputer, and in many other microcomputers, the Halt instruction object code con-
sists of all O bits. This is done with good reason, since unused memory words frequently contain
all 0 bits. In the event that a program, while being debugged. makes a wild jump and tries to ex-
ecute instructions in some area of memory where no instructions exist, there is a very good
chance that it will pick up all Os for the next instruction object code - which will cause the pro-
gram to simply stop, and do as fitle harm as possible.

The Halt instruction mnemonic will be, appropriately:

HALT

AN INSTRUCTION SET SUMMARY

You will find that books describing individual microcomputers provide tables that
summarize the microcomputer instruction set cryptically. These summary tables
"are very useful. Assuming that you have a general understanding of assembly
languages, two or three pages tell you everything you need to know about opera-
tions performed when any instruction is executed.

We are going to summarize our hypothetical instruction set with summary Table
7-1. In Volume 2 similar tables will summarize the instruction sets for real
microcomputers.
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tn Table 7-1, symbols are used as follows:
ACO Accumulator ACO

AC1 Accumulator AC1

ADDR A 16-bit memory address

C Carry status

DATA  An 8-bit binary data unit

DCO Data Counter DCO

DC1 Data Counter DC1

DC2 Data Counter DC2

DCX Any data counter

DISP An 8-bitsigned binary address displacement
DST Any destination register

| Any status indicator

[0} Overflow status

P An 1/0 port number
PC Program Counter

R Any register

S Sign status

sP Stack Pointer

SRC Any source register

Sw Statuses

V4 Zero Status

[1 Contents of location enclosed within brackets. If a register designation is enclosed with-
in the brackets, then the designated register's contents are specified. If an 1/0 port
number is enclosed within the brackets, then the 1/0 port contents are specified. If a

memory address is enclosed within the brackets, then the contents of the addressed
memory jocation are specified.

rn Implied memory addressing; the contents of the memory location designated by the
contents of a register.

Logical AND

Logical OR

Logical Exclusive OR

Data is transferred in the direction of the arrow.

— Data is exchanged between the two locations designated on either side of the arrow.

1 £ <>

Under the heading of STATUSES in Table 7-1, an X indicates statuses which are modified in the
course of the instructions execution. If there is no X, it means that the status maintains the value
it had before the instruction was executed.
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APPENDIX A
STANDARD CHARACTER CODES

Hexadecimal - ASCIl EBCDIC Hexadecimal ASCHH EBCDIC
Representation {7 bit) (8 bit) Representation {7bit) 8 bit)

0 3F ?

1 40 @ blank .
2 41 A

3 42 B

4 43 C

5 44 D

6 45 E

7 46 F

8 47 G

9 48 H

A 49 [

B 4A J !
¢ 48 K :
D 4c L {
E 4D M !
F 4€ N +
10 aF o !
" 50 P &
12 51 Q

13 52 R

14 53 S

15 54 T

16 55 U

17 56 \

18 57 w

19 58 X

1A 59 Y

B 5A z [
1c 58 | f
1D 5C \

1E 5D ] )
1 5E :
20 blank - 5F A
21 { 60

22 " 61 a

23 # 62 b

24 $ 63 c

25 % 64 d

26 =3 85 e

27 ’ 66 1

28 { 67 g

29 ) 68 h
2A * 69 i

2B + BA i

2C ’ 68 k ,
2D - 6C | %
2E . 6D m -
2F / 6E n )
30 0 BF o ?
31 1 70 o

32 2 71 q

33 3 72 r

34 4 73 s

35 5 74 t

36 6 75 u

37 7 76 v
38 8 77 w
39 9 78 X
3A : 79 y
3B H 7A z :
3C { 78 #
30 = 7C @
3€ y 70 i




APPENDIX A (continued)

Hexadecimal ASCH. EBCDIC Hexadecimal ASCIl EBCDIC
Representation (7 bit) (8 bit) Representation (7bit} {8 bit)
7€ = BF
7F co
80 c1 A
81 a C2 B8
82 b C3 C
83 c C4 D
84 d Cc5 E
85 e (645} F
86 f c7 G
87 g c8 H
88 h ) !
89 i CA
8A CB
8B cc
8C CcD
8D CE
8E CF
8F DO
90 D1 J
91 i D2 K
92 k D3 L
93 | D4 M
94 m D5 N
95 n D6 (0]
96 o b7 P
97 p 08 Q
98 q D9 R
99 r DA
9A DB
98 DC
9C DD
9 DE
9E DF
9F EO
A0 El
Al E2 S
A2 s E3 T
A3 t E4 U
A4 u E5 \
A5 v E6 w
A6 W E7 X
A7 X E8 Y
A8 y E9 4
A9 z EA
AA EB
AB EC
AC ED
AD EE
AE EF
AF FO 0
BO F1 1
B F2 2
B2 F3 3
B3 F4 4
B4 F5 5
85 F6 [
B6 F7 7
B7 F8 8
B8 F9 9
B9 FA
BA FB
BB FC
BC FD
BD FE
BE FF
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